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ABSTRACT

As countries continue making gains towards the attainment of sustainable

development goals, surveillance of health outcomes at the sub-district level will

become important as district level indicators may mask areas where progress

is slow. To achieve this high level of surveillance, it may be necessary to

pool data from multiple data sources with different spatial resolutions. The

aim of this study was to estimate and model under-five mortality risk at the

sub-district level in Malawi by combining multiple data sources. We used

Bayesian hierarchical models to combine the Demographic and Health Survey

(DHS) data with Census data in a principled framework. A binomial generalized

linear geostatistical model was fitted to estimate the risk of under-five mortality

in the presence of the various covariates. Results showed that mother’s age

and weight of child at birth were associated with under-five mortality.However,

the posterior odds showed no significant differences in dying for children from

mothers across different ages. In addition, the results showed that the risk of

under-five mortality is higher in the northern region and along lakeshows as well

as districts in the lower Shire. The study provided a means for performing small

area estimation of population parameters of interest. In addition, using survey

findings along with risk maps is essential for disease monitoring and surveillance

purposes as well as for strengthening survey findings. More importantly, the

project has improved our understanding of methods used in combining information

from different sources.
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CHAPTER ONE

INTRODUCTION

This chapter presents a brief background of the study, the knowledge gap that

was identified, the study objectives and the significance of the study.

1.1 Background Information

Collecting data that gives accurate and timely estimates of population quantities

of interest is a challenge in most situations. Lohr and Raghunathan (2017)

point out that probability sampling provides a means of collecting information

efficiently as well as methods for assessing the suitability of the estimates

obtained and has long been a foundation for producing national statistics for

many countries (National Academies of Sciences, Engineering and Medicine,

2017). By definition, probability sampling means that “every item in the

population has a positive chance of being included in the sample” (Taherdoost,

2018, p. 20). This sampling process uses some form of random selection and

each unit is drawn with a known probability or has a nonzero chance of being in

the sample. Probability sampling is more useful and precise when generalizing

the findings from the sample to the whole population.

Many sampling techniques exist which fall under probability sampling including

simple random sampling, systematic sampling, cluster sampling and stratified

sampling. Different probability sampling methods are used depending on the

nature of studies as well as how convenient and suitable the technique is. For

example, a study conducted in Kampala District of Uganda used probability

systematic sampling from the police register to determine the burden of alcohol

use among the Uganda Police (Ovuga & Madrama, 2006). Surveys such as

1



Demographic and Health Survey (DHS), Multiple indicator Cluster surveys

(MICs) use a combination of cluster and stratified sampling to select samples.

The probability sampling methods, however, face some challenges such as decreased

response rates and in some occasions no response at all. In the United States of

America, for instance, as reported in the National Center for Health Statistics,

(2016), the US National Health Interview Survey (NHIS) which is a high-quality

face-to-face survey, the response rate had declined from 92% in 1997 to 70%

in 2015 and there were also issues of nonresponse among individuals within

sampled households. Five National Maternity Surveys (NMS) conducted in

England at varying intervals between 1995 and 2018 also showed a decline in

response rate from 67% in 1995 to 29% in 2018 (Harrison et al., 2020).

A study to evaluate the relative importance of the factors associated with the

decline of fertility in sub-Saharan Africa is another example showing declining

response rates (Westoff et al., 2013). From 24 sub-Saharan African countries

that were included in the study, the response rate declined to an average of

about 7% (ranging from 0.2% to 20%) in the year 2013 from the average of 9%

(ranging from 0.4% to 25%) response rate recorded between 2009 to 2011. The

2004 MDHS also showed a decrease in response rate compared with the 2000

MDHS. Specifically the response rates declined from 98% to 96% for women

and from 97% to 95% for men (National Statistical Office (NSO) [Malawi] and

ICF, 2017).

As a result of nonresponse, researchers have been increasingly inclined to implement

data collection strategies to combat this trend, including longer field periods,

increased numbers of call attempts, sending advance letters, offering incentives

and attempting refusal conversions (Holbrook et al., 2007). Issues of nonresponse

in surveys generally produce biased estimates of various population parameters.
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Another challenge faced by probability sampling methods is the issue of misreporting.

Issues of misreporting are usually experienced in surveys covering sensitive

topics as a chosen respondent who agrees to participate in the survey fails

to answer sensitive questions honestly and thereby creating measurement error

(McNeeley, 2012). Survey respondents tend to misreport for various reasons

such as avoiding embarrassment or stigmatization, avoiding potential repercussions,

and trying to present themselves to the researcher in a positive manner (Pridemore

et al., 2005). For example, in the Malawian setting, surveys about sexual

activity are subject to misreporting due to social undesirability of such behaviour

among different cultures within the country (Poulin, 2010).

Data collection methods based on probability sampling are also expensive and

time-consuming (Lohr & Raghunathan, 2017). This, for instance, is reflected

when socially disadvantaged groups like the homeless, chronically mentally

ill and prostitutes are to be sampled (Bonevski et al., 2014). Under normal

circumstances, such groups of people are hard to be interviewed and require

more time in strategizing how to approach and engage them in health and

medical research surveys. In some circumstances, incentives may be required

to get such groups to participate in the survey which might mean additional

costs.

Another challenge faced by surveys is to provide useful estimates for small

sub-populations at higher spatial resolution widely known as small area estimation.

By definition, small area estimation (SAE) is “any statistical technique involving

the estimation of parameters for small sub-populations” (Rao & Molina, 2015,

p. 3). This is generally used when the sub-population of interest is included in

the larger survey and the term “small area” usually refers to a small geographical

area. The demand for small area statistics has greatly increased worldwide due

to their growing use in formulating policies and programs, in the allocation of

government funds and in regional planning (Rao & Molina, 2015). Furthermore,
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legislative acts by national governments have increasingly created a need for

small area statistics. In the Malawian setting for instance, SAE is important

so that limited resources for various interventions can be delivered to target

populations at the right time.

SAE techniques were used to produce reliable, stable, representative and high

precision small area estimates of poverty incidence at the district level in the

State of Bihar in India (Islam et al., 2018). This was done by linking data from

the existing Household Consumer Expenditure Survey data and the population

census. The results would be necessary for effective planning, implementation

and monitoring of various government schemes in Bihar such as focused and

target-oriented intervention programs. In South Africa, SAE techniques were

used to prove reliable district-level HIV prevalence estimates from national HIV

prevalence survey (Gutreuter et al., 2019). A small area analysis has also been

done pooling together national DHS surveys to provide estimates of under-five

mortality rates (Zehang et al., 2019).

Even though small area estimation is challenging, it is an area of interest for

researchers since it provides reliable estimates of population health indicators

essential for monitoring trends and inequalities over time (Alexander & Alkema,

2018). Alexander and Alkema (2018) also recognized that there might be

substantial differences that can occur across regions within a country and hence

the need to measure and monitor trends at different smaller area levels to

fully understand a country’s progress and possible interventions. Moreover,

according to Rose (2015), geographic variation in population parameters exist

not only at a country level but also extends into sub-national and local areas

and thus knowledge of such variations is necessary for decision making about

resource allocation (Islam et al., 2018).

Further to this, small area estimates of the prevalence of risk factors play a

crucial role in decision and policy-making and as such, quality of these estimates
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must always be taken into account (Manzi et al., 2011). For example, when

addressing area-specific health issues or lifestyle behaviours, researchers need

to put into consideration the fact that some people live in deprived areas with

limited access to screening programmes or preventive healthcare campaigns,

or they may have a higher level of certain risk factors (Manzi et al., 2011).

Knowledge of the prevalence of risk factors in small areas is essential to make

health promotion strategies more effective.

To overcome the challenges faced by sample surveys such as high costs of data

collection, declining response rates, misreporting and small area estimation

discussed above, there is need to combine information from different data

types and sources. Combining information from different data sources with

varying spatial resolutions has many advantages. First and foremost, combining

information from several sources provides a means for improving estimates of

population parameters (Kim et al., 2018). For instance, “combining information

from multiple data sources can enhance estimates of health-related measures

by using one source to supply information that is lacking in another, assuming

the former has accurate and complete data” (He et al., 2014, p. 1). Further, if

the two data sources have common variables, then the produced estimates may

have improved precision due to increased sample size for the common survey

items, (Merkouris, 2010).

Since different data sources have different limitations such as nonresponse,

noncoverage and measurement or response bias, combining information for

the same set of variables reported from multiple sources might alleviate these

errors and produce improved estimates of these variables (He et al., 2014). For

instance, combining survey information with non-survey information such as

census provides comprehensive and precise estimates of useful health indicators

at a very fine spatial scale which improves decision making (Fung et al., 2010).
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Reliable estimates of health status and many other population parameters may

in turn improve global health (Finucane et al., 2014).

Also, a combined dataset can address analytic problems beyond the scope of

a single survey (Lohr & Raghunathan, 2017) and can derive information on

multiple sections of the population unlike when a single data source is used.

A scenario may happen whereby two surveys conducted independently on the

same population can have one or more variables in common and other variables

that are not common for both surveys.

Because data is usually scarce and inadequate at small domain levels, combining

information provides a solution to small area estimation, (Islam & Chandra,

2019; Gutreuter et al., 2019; Zehang et al., 2019) and it addresses the best

prediction problem for small areas (Kim et al., 2018). Furthermore, the small

area estimates produced by combining information from two surveys are more

efficient than those produced from a single small survey (Islam & Chandra,

2019). This is made possible with the growing availability of data from several

different surveys such as DHSs’ as well as MICS and other auxiliary information

outside samples used in surveys. The auxiliary information usually comes from

large administrative record datasets like census and remote sensing data derived

from satellite images (Rose, 2015).

Lastly, combining information can produce datasets without missing information

in them. Usually, other data sources may contain information on variables that

are not measured in a survey (National Academies of Sciences, Engineering and

Medicine, 2017). Therefore, models developed on one data source may be used

to impute missing variables in other sources thus making statistical inference

beyond the scope of a single study possible (Lohr & Raghunathan, 2017).
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1.2 Problem Statement

The declining response rates for national surveys worldwide affect the reliability

of estimates. Declining response rates have contributed to higher costs for

data collection and even if reliable estimates for subpopulations of interest

may be calculated, they may require multiple years of data which when they

are produced may be outdated (Lohr & Raghunathan, 2017). In resource

limited settings like Malawi, it is difficult to obtain small area statistically

representative estimates like at sub-district level. This is because national

surveys such as the DHS, which is a nationally representative survey, is powered

to provide district-level estimates and provides little or no information on

the small area population characteristics that probably vary across Malawi’s

geographic space.

To obtain estimates for subpopulations of interest, it may be necessary to

combine the information from surveys with other rich data sources such as

population and housing census (PHC) or other surveys that have a high spatial

resolution. However, methods on how to statistically combine such information

to derive better estimates for small area population parameters are not easily

accessible. For this reason, researchers usually make inferences about small

areas based on the district level estimates which are readily available from the

DHS. This research will investigate statistical methods for integrating DHS

data with much higher spatial resolution and precision datasets (census-based

data) to estimate under-five mortality at a fine spatial scale in Malawi.
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1.3 Objectives of the study

1.3.1 Main objective

• To develop a principled statistical framework for combining data from

census and survey sources with an application to Malawi DHS and Malawi

Population Census.

1.3.2 Specific objectives

• To investigate different methods for combining data from multiple sources.

• To model under-five mortality at a sub-district level spatial resolution in

Malawi.

• To spatially predict under-five mortality indicator values at unsampled

locations.

1.4 Significance of the study

This study will help come up with estimates of important indicators in areas

that were not sampled and will deepen the understanding of the methods

used in combining information from different sources. This is important in

resource constrained countries where there are several disjointed data sources.

Furthermore, the study will contribute to the available work that has been done

in the field of data fusion in order to come up with reliable small population

estimates. In many cases, fine-scale data is not readily available, leading to

the use of coarse data in monitoring and disease surveillance. By leveraging

the multiple data sources available, small area estimates can be useful for
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monitoring and evaluation purposes of different health outcomes at a fine spatial

resolution.
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CHAPTER TWO

LITERATURE REVIEW

The following chapter reviews statistical methods that are used in combining

data from different sources. It further expounds on the concept of Bayesian

Hierarchical Models and Generalised Linear Geostatistical Models.

2.1 Introduction

This chapter presents an overview of various statistical methods used for linking

data from different sources. It also introduces the methods that have been used

to link DHS data and census data for this study.

2.2 Methods for combining data

2.2.1 Statistical matching

Statistical matching is a model-based approach for providing joint statistical

information based on variables and indicators collected through two or more

sources, (Leulescu & Agafitei, 2013). Statistical matching requires that the two

files containing information on a set of units be completely disjoint, (Christen,

2012; D’Orazio et al., 2006; Kiesl & Rässler, 2006). This means that data

comes from two independent probability samples, with a few or no units in

common, (Scanu, 2014). In scenarios where there are a few units common to

both data sets, then these common variables are not able to identify the units.

The statistical matches are then made based on similar characteristics and not

a unique identifier, (Herzog et al., 2007; Radner, 1980; Winkler, 2014).
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For example, if there are two data sources whereby one data source has information

on the education level of persons, their gender, age and municipality and

another data source has information on the occupation of (other) persons,

their gender, age and municipality, then the information on gender, age and

municipality can be used to statistically match similar units in the data sources

with each other, (Waal, 2015).

The basic idea in statistical matching is that there are two data sources A and

B sharing a set of variables X while the variable Y is available only in A and

the variable Z is observed just in B, D’Orazio (2011). The X variables are

common to both the data sources, while the variables Y and Z are not jointly

observed. Statistical matching, therefore, investigates the relationship between

Y and Z at “micro” or “macro” level.

In the micro case, statistical matching aims at creating a synthetic data source

in which all the variables, X, Y and Z, are available. This synthetic data

source is comprised of data from individual units in the different data sources

(D’Orazio, 2011). The information from one data source is used to estimate

target values in the other data set, (Waal, 2015, p. 4).

On the other hand, in the macro-level case, the data sources are integrated

in order to derive an estimate of the parameter of interest, (D’Orazio, 2011;

D’Orazio et al., 2006; Waal, 2015). Based on all the data, a parametric model

such as a multivariate model is built and thereafter one estimates the parameters

of the model which are then used to estimate population parameters of interest,

(Waal, 2015, p. 5).

Statistical matching may be applied in different situations, such as in matching

of two non-overlapping surveys with common background variables, matching

of Big Data to survey or administrative data, and finding imputation values

when for certain groups of units a number of variables are missing by design,
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(Waal, 2015). For example, Wolff 1977 and Ruggles and Ruggles 1974 carried

out statistical matches in the US using the 1969 Internal Revenue Service Tax

Model and the 1970 Decennial Census Public Use Sample 15 percent file whose

aim was to estimate and analyse the size distribution of household wealth,

(Radner, 1980).

The major advantage of statistical matching is that it can enhance the complementary

use and analysis of existing data sources such as cross-cutting statistical information

that encompasses a broad range of socio-economic aspects without further

increasing costs and response burden, (Leulescu & Agafitei, 2013). Besides, if

statistical matching is done accurately, the linked data sets may provide more

information than would be provided by each different data source and this opens

up opportunities for performing multivariate relationships among the extra

variables, (Christen, 2012; Leulescu & Agafitei, 2013). For example, matching

patient addresses with spatial data can lead to the discovery of correlations

between environmental factors and local hot-spots of disease cases, (Christen,

2012).

However, statistical matching is a complex operation which requires specific

technical expertise and raises several methodological issues.

2.2.2 Imputation

Another method for combining information from different sources is by imputation.

Imputation refers to the process of replacing missing data with substituted

values. Imputation fills in responses for items not completed by the respondent,

(Brick, 2011) and thus multiple imputation is a tool for handling nonresponse

in sample surveys, (Gelman et al., 1998). After imputation, analysis is then

done as if there were no missing values at all, (Zarnoch et al., 2010).
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In the imputation process, variables that have missing values or variables

missing from a data source are filled in using various techniques from information

available from surveys or other data sources. When imputing missing data

from several samples one can either impute missing data from each survey

or can combine data from all the surveys and impute the missing data in a

combined data matrix, (Gelman et al., 1998). When imputing data from each

survey, models usually built from a certain data source are used to impute the

missing variables from another data source, (Zarnoch et al., 2010). However,

this method becomes challenging if each individual survey has a lot of missing

information. Also, such methods are valuable when the survey with the missing

variable is much larger than the survey with the observed variable, and/or where

the available common variables are highly predictive of the outcome, (Elliott

et al., 2018).

On the other hand, when imputing data in a combined data matrix, multivariate

models or a sequence of regression models are often used. This method, however,

does not take into consideration the differences between surveys, (Zarnoch et

al., 2010). For instance, it does not take into account the differences in times of

conducting the surveys, survey methodologies and/or organisations conducting

the surveys, (Gelman et al., 1998).

A study by Gelman et al. (1998) used multiple imputation by adding a hierarchical

regression model to existing methods of imputation designed for single surveys.

This hierarchical model allowed covariates at both individual and survey levels

and linked parameters in the different surveys. Imputations of item nonresponse

were determined by data from that survey and imputations for questions not

asked in a survey were determined by data from other surveys. This study was

motivated by a study of pre-election public opinion polls in which not all the

questions of interest were asked in all the surveys.
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Results were a compromise between the approaches of no pooling and complete

pooling of surveys which is one of the properties of the Bayesian approach.

The estimated between-survey variation yielded wide posterior intervals for

questions not asked in the survey. Including more variables (including those

not asked in all surveys) in the imputation model, offered a flexible way to

account for item nonresponse.

He et al. (2014) conducted a study on hospice-use by late stage cancer patients

in which data was available from patients’ abstracted medical records but there

were issues of underreporting. The data was therefore supplemented with

the patients’ medicare claims that contained information on hospice use even

though these data also had some missing information. A multiple imputation

approach was applied using information from both sources whilst borrowing

strenth from each other. This method yielded sensible results since it was

able to account for misclassification of the hospice use from both data sources

in an appropriate way. Clearly, this approach provided an effective means to

synthesizing information from the two sources.

Imputation is advantageous because it can augment the amount of information

available for analysis and to produce data sets without holes in them, (Lohr

& Raghunathan, 2017; Soley-Bori, 2013; Zarnoch et al., 2010). In addition,

it provides a means for inferring beyond the scope of each study. Multiple

imputation allows for the uncertainty about the missing data by creating several

different plausible imputed data sets and appropriately combining results obtained

from each of them, (Sterne et al., 2009).

Despite these advantages, there are several challenges associated with combining

information from multiple survey data sources via the multiple imputation

approach. For example, surveys usually involve stratification, clustering and

weighting for selection and nonresponse, (Lohr & Raghunathan, 2017). Though

each survey may represent the same or a similar population, the complex
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survey design differences have to be taken into consideration in deriving the

combined estimates. Estimates based on combining information from multiple

data sources are subject to errors due to incomparability as well as issues in

modelling of those errors, (Soley-Bori, 2013). Lastly, many multiple imputation

procedures assume that data are normally distributed, so including non-normally

distributed variables may introduce bias, (Sterne et al., 2009).

2.2.3 Multiple frame sampling

Another method for combining data from different data sources is multiple

frame sampling. A multiple frame survey is defined as ”a set of several (single

frame) surveys whose samples are combined to provide parameter estimates

for the union of frames”,(Biemer, 1984, p. 1). The objective of the dual-frame

approach is to draw subpopulation samples from different sampling frames that,

when combined, provide full coverage of the target population, (Baffour et al.,

2016). The general principle in multiple frame sampling is that probability

samples are selected independently from say Q sampling frames available, (Lohr

& Raghunathan, 2017; Rao & Lohr, 2006). If Q = 2, then the survey is called a

dual-frame survey and if Q > 2 then it is a multiple frame survey. Information is

collected for every unit in each frame sample which is then used to classify each

frame-specific sample data into disjoint domains, (Mecatti & Singh, 2014). For

example, for a simple dual-frame case, with frames A and B, four frame-specific

domain samples might be classified, that is, samples a(A) and ab(A) from frame

A and b(B) and ab(B) from frame B. The collection of data from the Q frames

is then used for estimation of the population parameter of interest and the union

of all the frames represents the target population, (Mecatti & Singh, 2014).

Estimation occurs in different ways. First is a combined frame approach which

is also known as a single frame estimation. In the combined frame approach,
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all the samples drawn from different frames are combined into a single sample

with appropriate weights included and then population parameter estimates

are computed directly, (Lu et al., 2013). This method is simple and unbiased

but does not use all the relevant information, (Lu et al., 2013).

The other approach is known as a separate frame approach and involves computing

separate estimates of each domain using each sample that falls in that domain,

(Mecatti & Singh, 2014). Afterwards, the domain estimates are aggregated over

all the domains within and between frames in order to obtain an estimate of

the population parameter.

Sampling units from multiple frames increases coverage and/or efficiency than

when only a single sampling frame is used, (Brick, 2011). Multiple frame

methodology can be used to improve survey coverage by complementing the

strengths and limitations of one another and/or to reduce cost while maintaining

broader coverage, (Chromy & Wilson, 2013; McMillen et al., 2015). For example,

in a survey of businesses, where one frame is an incomplete list of businesses

but easily accessible, and the other frame a list sample of businesses indicating

their geographic areas, information from these two frames may be combined to

provide better coverage and lead to efficiency, (Brick, 2011).

In the same vein, multiple frame surveys greatly decrease sampling costs due

to the use of already available administrative records, (Rao & Lohr, 2006).

Hartley (1962, 1974) showed that dual-frame surveys can cost far less than a

single-frame survey that achieves the same precision. His applications concentrated

on the situation where one frame is complete but expensive to sample; other

frames are inexpensive to sample but incomplete. In many agricultural surveys,

an area frame consists of segments of land; enumerators visit a probability

sample of the segments. A list frame consists of the names and addresses of

agricultural operators. The area frame is complete and insensitive to changes

in farm ownership and activity, but very expensive to sample because of the
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in-person visits. The list frames are usually less costly to sample, particularly

if the commodity of interest is concentrated in the operators on the list, but

the lists may not include all producers of the commodity.

It should be noted that the different frames from which information is derived

from usually include different subsets of the population, (Lohr & Raghunathan,

2017) and that these methods are ideal when combining information from

sources that are measuring same quantities.

2.2.4 Record linkage

Record linkage refers to “a process of pairing records from two files and trying to

select the pairs that belong to the same entity”, (Winglee et al., 2005, p. 4) and

is a key technological tool that is used to exploit the wealth of information from

different data sources, (Shlomo, 2019). Record linkage is conducted between

two distinct data sources or within a single data-set to identify multiple entries

for one person or record unit. This is done by matching and then merging

records for a particular entity from a survey with other data sources believed

to belong to the same entity using record identifiers such as name, date of birth

and address, (Shlomo, 2019; Winglee et al., 2005).

There are two types of record linkage and these are exact or deterministic record

linkage and probabilistic record linkage. In exact record linkage, records that

have been linked from two different sources are declared to belong to the same

entity if and only if they agree exactly on every character of every matching

variable, (National Academies of Sciences, Engineering and Medicine, 2017;

Shlomo, 2019). For example, “when comparing two records on first and last

name, age and street number, the records are deemed to be a link if and only

if the names agree on all characters, the ages are equal and the street numbers

are identical”, (Herzog et al., 2007, p. 82).
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On the other hand, probabilistic record linkage is used when there is no unique

identifier across data sources or when personal identifiers used in reporting or

transcription do not differ, (Brown, 2017; Kabudula et al., 2014). By definition,

probabilistic record linkage refers to “the process of determining which records

in two databases correspond to the same underlying entity without a unique

identifier”, (McVeigh et al., 2019, p. 1). To determine whether a pair of records

belong to the same entity, probabilities are used, (Machado, 2004). Under

the probabilistic type of record linkage, a similarity score of likely matches is

calculated using a pattern of agreements, disagreements, and near-agreements

among the variables used in linking, (Lohr & Raghunathan, 2017). Threshold

value is determined before-hand such that if the similarity score exceeds the

threshold then a record from source A is linked with a record from source B.

All in all, data linkage should be conducted with optimal validity and reliability,

and minimal risk to privacy and confidentiality, (Dusetzina et al., 2014).

2.2.5 Bayesian Hierarchical methods

Bayesian hierarchical models are “multi-level stochastic models in which a

probability is decomposed into a series of levels linked by simple probability

rules”, (Arab et al., 2007, p. 2). The development of hierachircal models was

a primary result of a shift in collaboration of statistics with other disciplines

and inclusion of complex processes and recognition that prior knowledge in

experiments plays a crucial role in statistical inference, (Gelfand, 2012). Hierarchical

models offer a flexible framework for accommodating complex relationships

between data and the process models while taking into account different sources

of uncertainty in the model as well as priori scientific knowledge while retaining

many advantages of a strict likelihood approach, (Arab et al., 2007). In hierarchical

modelling, the joint distribution of a collection of random variables can be
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decomposed into a series of conditional models. For example, if a, b and c

are random variables then basic probability allows the factorization: [a, b, c] =

[a|b, c][b|c][c]

whereby [.] specifies a probability distribution and the joint distribution describes

the behaviour of the process at all spatial locations and possibly at all times.

There are three basic stages when modeling a complicated process in the presence

of data. As motivated by Berliner (1996), a data model is the first stage

and is an observational process which specifies the data distribution given the

fundamental process of interest and parameters describing the data model,

(Gelfand, 2012). The second stage is a process model which describes the

process and is conditional on other process parameters. The final stage is a

parameter model which models uncertainty in the parameters, from both the

data and process stages. Mathematically, the three stages are written as follows:

Stage 1: Data model: [data|process, data parameters]

Stage 2: Process model: [process|process parameters]

Stage 3: Parameter model: [data|process, data parameters]

It has to be noted that each of these three stages can have many sub-stages.

Unlike the methods discussed above where paramaters are fixed and unknown,

in Bayesian hierarchical models the paramaters are regarded as random variables

and statements about these parameters are interpreted as the degree of belief

based on some prior knowledge, (Held & Sabanés Bové, 2014). The beliefs about

these parameters are then revised and summarized in a posterior distribution

after getting the data, (Filippi & Holmes, 2017).

Advantages of Bayesian hierarchical models
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Firstly, when modeling via the Bayesian approach, many different sources of

uncertainty can be incorporated and projected through time. For instance, the

prior distributions reflect uncertainty in parameters while the likelihood model

captures stochasticity of the process and some sampling and non-sampling

errors. As a result, one framework can handle data from multiple sources

while taking into account the different quality of each source at the same time,

(Alexander & Alkema, 2018).

Another advantage of Bayesian modeling is that since it incorporates prior

information in the model, then the resulting posterior parameter estimates

are influenced by the observed data. This is particularly useful in situations

where data is limited in such a way that the little information available can be

combined robustly through the Bayesian approach and hence allowing information

to be pooled across different dimensions such as time and age. For example,

trends observed in some areas can be used to inform trends in other similar

areas with limited data, (Alexander & Alkema, 2018).

A study involving Bayesian hierarchical models for estimating agricultural yield

from multiple repeated surveys was formulated by (Wang et al., 2012). In

this study, prior distributions on model parameters were specified and details

on model inference were presented via Markov chain Monte Carlo (MCMC)

methods. In their model, information from multiple monthly surveys measured

on different temporal supports was combined and the different levels of the

hierarchy incorporated dependence between monthly surveys as well as serial

dependence of annual yield. Results showed that the Bayesian model produced

superior yield forecasts/estimates, while quantifying different sources of uncertainty.

This study shows that hierarchical models are flexible in accommodating multiple

data sources and different serial correlation structures. More importantly the

model was able to produce root mean square error reduced by between 7.5% and

15.5% over other yield estimators. Finally, due to the model’s ability to include
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auxiliary information in its levels, the study was able to directly measure the

effect of environmental conditions on end of season corn yield.

Finucane et al. (2014) conducted a study whose aim was to estimate population-level

trends in measures of health status. In their study, Finucane et al. (2014)

presented a Bayesian model that systematically combined disparate data to

make country-, region- and global-level estimates of time trends in important

health indicators, (Finucane et al., 2014). A total of 199 countries and territories

from 1980 to 2008 were included to estimate trends in mean systolic blood

pressure (SBP) for adults aged 25 years and older. The 199 countries were

grouped into 21 subregions which were further grouped into seven merged

regions. In this study, a hierarchical model was necessary to accommodate

missingness when the data was being aggregated to regional and global levels

and to provide inference for all country-year-age triplets. To borrow strength

over time, countries and age prior distributions provided by the hierarchy were

used while constraining plausible parameters. Finucane et al. (2014) fitted a

Bayesian hierarchical model using MCMC approach which enabled inference

in high dimensional constrained parameter space while providing posteriors

important for statistical inference. Results showed that there had been a

transition in risk of HBP for cardiovascular disease with decreasing blood

pressure in high-income regions and increasing levels in many lower income

regions.

A Bayesian framework was also applied in propagating large database of malaria

field survey to evaluate trends in malaria infection prevalence across Sub-Saharan

Africa between the years 2000 to 2015, (Bhatt et al., 2015). Data from 27,573

geo-referenced population clusters from sub-Saharan countries were combined

in a spatio-temporal Bayesian geostatistical model to model malaria infection

prevalence in children aged between 2 to 10 years. Results showed that the

prevalence of malaria infection in these children declined from 33% in 2000
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to 16% in 2015. Community-based surveys data across sub-Saharan Africa

were also combined to determine malaria transmission cycles, (Snow et al.,

2017). In this study, data from 50,424 surveys at 36,966 geocoded locations

were combined in a Bayesian hierarchical binomial model in order to estimate

stable spatial and temporal structured patterns of malaria prevalence in children

aged 2 to 10 years between the years 1900 to 2015. Similarly, results showed

a long-term decline in malaria prevalence from 40% between 1900-1929 to 24%

between 2010-2015. Evidently, the Bayesian approach provided a framework

for conveniently combining such different data sources.

Geostatistical modelling

Geostatistical data methods are a form of hierarchical specification which naturally

lead to the adoption of a Bayesian framework methodology for inference and

modeling purposes, (Gelfand & Banerjee, 2017). Geostatistics refers to “the

sub-branch of spatial statistics in which the data consist of a finite sample of

measured values relating to an underlying spatially continuous phenomenon”,

(Diggle & Ribeiro, 2007, p. preface).

The general theory in geostatistics is that measurements taken at locations close

together are usually more alike than measurements taken at locations farther

apart, (Gotway & Hartford, 1996). Geostatistics, therefore, provides methods

for quantifying this spatial correlation and for incorporating it in statistical

estimation and inference.

The other main objective of geostatistics lies in prediction. In geostatistics,

prediction refers to “inference about the realization of the unobserved signal

process S(x)”, (Diggle & Ribeiro, 2007, p. 24) and this is called kriging.
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CHAPTER THREE

MATERIALS AND METHODS

The following chapter expands in detail the materials and methods that were

used in the study. It expounds on the statistical formulae for the analysis

methods that were used in the study.

3.1 Data sources

3.1.1 MDHS data

The 2015-2016 MDHS was a cross-sectional survey and took place between

October 2015 and February 2016 and it provides a comprehensive overview of

population, maternal and child health issues in Malawi. In this survey, data that

allows the calculation of key demographic indicators such as fertility, under-five

and adult mortality rates were collected. In addition, the data allows the

exploration of direct and indirect factors that determine the levels and trends

of fertility and child mortality. The 2015-2016 MDHS used a two-stage selection

process as follows: 850 standard enumeration areas (SEAs) were selected in 173

urban and 677 rural areas (stratum or SEAs) using a probability proportional to

the SEA. In the second selection stage, a household list was used as a sampling

frame for selecting households in the selected SEAs. A total of 30 households

per urban SEA and 33 households per rural SEA were selected for interviews.

The survey interviewed all women aged 15 to 49 who were either permanent

residents of the selected household or those who slept in the household the night

before the survey. The survey selected 27,516 households and identified 25,146
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eligible women. Consequently, a total of 24,562 women were interviewed out of

the 26,361 households that were occupied.

3.1.2 Census and population level covariates data

In addition to the point level covariate data from the MDHS referenced at each

cluster, we also obtained population level geospatial datasets covering the whole

country from Humanitarian Data Exchange (https://data.humdata.org/). In

particular, we used vulnerability score to capture the social-economic structure

of the country. Additionally, being a malaria endemic country and its threat

among children, we included malaria risk as a potential predictor of mortality.

Model-based geostatistics are used to measure infection prevalence for malaria

and average proximity risk score for vulnerability by creating risk surfaces

based on thousands of geolocated cross-sectional surveys. The inclusion of these

covariates was influenced by studies that have shown that low socio-economic

status and malaria are among the factors contributing to child mortality, (Johnson

et al., 2010). Lastly, population data were extracted from the WorldPop data

sets. All these population level data were in raster format at 100m spatial

resolution. These data provided estimates at a high resolution thus allowing

the calculation of important health indicators at a finer scale than would be

possible if only district-level covariates were used.

Raster data allows for an easier way of integrating two types of data such as

discrete and continuous data. Also, with raster data, analysis of the data is

easy and quick to perform and do not require storage of geographic coordinates

since the geographic location of each cell is implied by its position in the cell

matrix.
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3.2 Data management

Child and women data files from DHS were merged by matching their household

numbers. Variables that were not necessary for the study were dropped and

only kept the variables relevant to the under-five mortality problem. Data

cleaning was carried out to remove duplicates and observations with missing

data. One aspect of the data cleaning process was to reduce the number of

variables in the merged dataset. Thus, from the 24,562 women aged between

15 to 49 that were interviewed, a total of 11680 women with children aged

five years and below were included in the survey of which 286(2.4%) women

had their children dead a year prior to the interview date while 11394(97.6%)

women had their children still alive.

3.3 Data analysis

Descriptive analyses were first done to summarize the data. In particular,

cross tabulations were done between the response variable and the explanatory

variables. Chi-square test of association was performed to find the factors

associated with under-five mortality. An exploratory spatial mapping was

performed to produce maps detailing the spatial distribution of clusters within

the 28 districts of Malawi and the underlying population densities. Spatial

mapping of crude under-five mortality at district level was also done.

To investigate the factors affecting under-five mortality, all potential risk factors

were then put into geostatistical models. During modeling the categories no

education and primary education for mother’s education were categorised as

one and this was asigned as the reference group. Similarly, for wealth index,

lowest and second weathy categories were categorised into a single category

and this was the reference category. This was done because the first categories

had few observations and could not be used as reference groups. After fitting

the model, we did predictive mapping of under-five mortality across the whole

25



Malawi including at unsampled locations. All the covariates were used in the

prediction model and the predicted values were posterior means realised from

the posterior predictive distribution. In addition, approximate standard errors

were also mapped. Both the predictive and standard errors maps were produced

by overlaying their rasters on the Malawi districts map to estimate under-five

mortality in Malawi.

All data analyses were carried out in the R environment for statistical computing

using geostatsp package (R Core Team, 2020) which uses the Integrated Nested

Laplace Approximation (INLA) on the backend. Data visualization was carried

out in R.

Description of key study variables

Table 3.1 shows a description of variables used in the study.

Table 3.1: Variables used in the study

Variable Description Source

Alive(Response variable) Child alive(0= Dead, 1=Alive) DHS

Age Mother’s age in years DHS

Sex Sex of child(1=Male, 2=Female) DHS

Education Mother’s level of education (0=None, DHS

1=Primary, 2=Secondary, 3=Higher)

Wealth Index showing a household well-being

(1=Lowest, 2=Second, 3=Middle, DHS

4=Fourth, 5=Highest)

Residence Area of residence(1=Rural, 2=Urban) DHS

Birth weight Weight of child at birth in kilograms DHS

(1=Low birthweight(< 2.5Kgs),

2=Normal birthweight(≥ 2.5Kgs)

Malaria risk Average malaria risk Census

Vulnerability Proportion of vulnerable individuals Census
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3.4 Study setting

Malawi is a small landlocked country in Southern Eastern Africa, sharing

boundaries with Zambia, Tanzania and Mozambique. The country is divided

into 3 administrative regions and further into 28 districts. The public health

system comprises 4 central hospitalas, district hospitals and health centres.

At the community level, health suiveillance assistants (HSAs) provide basic

care including treatment of common illnesses in children. In addition, the

faith-based health facilities primarily under the Christian Health Association

of Malawi (CHAM) also provides a wide network of health facilities. Figure

3.1 provides more information about the districts and the distribution of public

health facilities.

Figure 3.1: District boundaries, location and distribution of health care facilities
in Malawi. Here, government and CHAM facilities are shown
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3.5 Modeling framework

In this section, the Bayesian hierarchical method for data integration is discussed.

Given that data is available, Bayesian methods fit in to estimate and predict

distribution of the process as well as parameters in hierarchical settings. The

parameters are considered to be random and not fixed. In Bayesian statistics,

prior knowledge is used along with available observed data in order to come up

with new estimates. These new estimates are derived from posterior distributions

of the data through Markov Chain Monte Carlo (MCMC) or INLA approaches

and are then used for statistical inference. Bayes’ Theorem provides a mechanism

for finding the posterior and the theorem is presented in the equation below

where y represents a random variable and θ is a parameter of interest:

f(θ|y) =
f(y|θ)f(θ)

f(y)
(3.1)

In equation 3.1 above, f(θ|y) is the posterior distribution and is the conditional

distribution of a specified parameters given the data, f(y|θ) is the likelihood

function which is given by f(y|θ) =
∫

(f(y|θ)f(θ))dθ and f(θ) is the prior

distribution. Usually, the Bayes’ theorem is written as the posterior distribution

being proportional to the likelihood times the prior distribution, that is:

f(θ|y) ∝ f(y|θ)f(θ). (3.2)

In this study, focus is only on the geostatistical modeling approach which is

a special case of the Bayesian Hierarchical modeling that is used to combine

different datasets.
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3.6 Integrated Nested Laplace Approximation

This section describes how new estimates are derived through INLA approaches.

Given the posterior distribution:

f(θi|y)

∫
f(θi, ψ|y)dψ =

∫
f(θi|ψ, y)f(ψ|y)dψ (3.3)

Interest is on obtaining posterior marginals f(θi|y) for each parameter in the

vector and the estimates of the hyperparameters given by,

f(ψk|y)

∫
f(ψk|y)dψ−k (3.4)

The following steps are followed in the INLA approximation. Firstly, the

posterior marginals of the hyperparameters are approximated as given in the

equation below:

f(ψ|y) =
f(θ, ψ|y)

f(θ|ψ, y)
∝ f(ψ)f(θ|ψ)f(y|θ)

f(θ|ψ, y)
,

≈ f(ψ)f(θ|ψ)f(y|θ)
f(θ|ψ, y)

|θi∗(ψ) f̃(ψ|y),

where f̃(θ|y) is a Gaussian approximation for f(θ|y) and θ∗ is the mode.

Secondly, the parameter vector is partitioned in such a way that θ = (θi, θ−i)

and are again approximated using the Laplace procedure to obtain:

f(θi|ψ, y) =
f(θi, θ−i|ψ, y)

f(θ−i|θi, ψ, y)
≈ f(θ, ψ|y)

f̃(θ1|θi, ψ, y)
|θ−i=θ∗i (θi,ψ)

f̃(θi|ψ, y). (3.5)

INLA bypasses the computational complexity of computing f̃(θi|ψ, y) by exploring

the marginal joint posterior for the hyperparameters f(ψ|y) in a grid search to

select the important points ψk jointly with a corresponding set of weights ∆k

to give approximates to the posterior to the hyperparameters. Each marginal

f̃(ψk|y)∀k can be obtained using log-spline interpolation bases on selected ψk
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and ∆k. For each k, the conditional posterior f̃(θi|θi|ψ, y) is computed and a

numerical integration:

f̃(θi|y) ≈
K∑
k=1

f̃(θi|ψk, y)f̃(ψk|y). (3.6)

is, then, used to obtain f̃(θi|ψ, y).

3.7 Geostatistics

Geostatistics is a branch of spatial statistics concerned with the analysis of

statistically discrete data that relates to an unobserved continuous phenomenon.

In a geostatistical model, the data is represented as

(yi, xi) : i = 1, ..., n.

Here, the yi are the realized values of the random variable Yi associated with

spatial locations xi ∈ A ⊂ R2. In our application, the locations xi are the

specific locations (clusters) that were sampled during the DHS. Interest is on

estimating the underlying mortality across the continuous spatial region. It

is further assumed that the Y ′i s are dependent on an unobserved stochastic

process S = S(x) : x ∈ R2 which is expressed as follows;

[S, Y ] = [S][Y |S] (3.7)

Let p(x) be the prevalence of under-five mortality at location x. The resulting

model is then binomial in nature yielding a generalized linear geostatistical

model (GLGM). A standard GLGM is presented as

log

[
p(xi)

1− p(xi)

]
= d(xi)

′β (3.8)
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d(xi)
′ is a vector of explanatory variables associated with location xi. With

smoothing and random effects terms, the model becomes;

log

[
p(xi)

1− p(xi)

]
= d(xi)

′β + S(xi) + Zi (3.9)

where S = {S(x) : x ∈ R2} is a Gaussian process with mean 0 and variance

σ2. The correlation function is provided by ρ(x, x′) = Corr{S(x), S(x′)}. It

is assumed that the spatial process S is stationary and isotropic. Therefore,

Corr{S(x), S(x′)} = ρ||x− x′|| where ||.|| is the Euclidean distance.

A Matern correlation function is used in this application

ρ(u;φ, κ) = {2κ−1Γ(κ)}−1 (||x− x′||/φ)
κKκ (||x− x′||/φ) (3.10)

In this study, we draw data from different sources with different resolutions

effectively splitting the covariate term, d(xi)
′ into different components. Therefore,

the model 3.9 above becomes

log

[
p(xi)

1− p(xi)

]
= d(xi)

′β +W (x)′δ +Q(x)′γ + S(xi) + Zi (3.11)

In this formulation, d(xi)
′ is the vector of covariates at the sampled locations

as before, while W (x)′ and Q(x)′ are covariate vectors over the areal unit

and not necessarily at individual locations xi. Therefore, the model captures

data at different spatial resolutions. In particular, the W (x) and Q(x) capture

aggregate data for the entire spatial unit.

3.8 Spatial prediction for Generalised Linear

Geostatistical Models

Spatial prediction is concerned with estimating unknown values of a stochastic

process at locations where there was no data based on data available from
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nearby location points. The first step in spatial prediction is to define the

predictive target; let T ∗ be the target and is a property of the realisation of

a spatial component of the set of values of d(x)Tβ + S(x) for all values of x

in the region of interest, A. In our application where the geostatistical model

is binomial in nature, the predictive target is the prevalence surface over the

region of interest A and is shown by the equation below:

T ∗ = {p(x) = exp{T (x)}/(1 + exp{T (x)}) : x ∈ A}, (3.12)

where T (x) = d(x)Tβ + S(x) and the prediction takes the form of a map.

Secondly, a number of random samples , say, B are drawn from the predictive

distribution of the complete spatial surface {S(x) : x ∈ A}. Thereafter, the

value of the specific target from each sample T ∗1 , ..., T
∗
B is calculated and suitable

summaries of the resulting empirical distribution of the T ∗i are reported.

During the actual prediction process, the region of interest A is approximated

using a grid χ = {x∗1, ..., x∗q} consisting of q prediction locations in region A. To

make inference on T ∗, we obtain samples from its predictive distribution, [T ∗|y].

It has to be noted that T ∗ can be calculated directly from the fitted model

parameters and the spatial surface S(x), hence samples of T ∗ can be obtained

from the predictive distribution of S∗ = {S(x) : x ∈ χ}. Finally, the predictive

samples s∗h for h = 1, ..., B can then be transformed into corresponding samples

t∗h from the predictive distribution of T ∗ by direct estimation. This can then

be used to obtain any summary of the predictive distribution of interest at any

or all of the q prediction locations x∗j .

3.9 Geostatistical model for Malawi

The covariate vector d(xi)
′ captures the following covariates from DHS; mother’s

age, birth weight, residence, mother’s education and wealth index. On the other
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hand, the vector W (x)′ captures census covariates and these include malaria

risk and vulnerability both of which are in raster format.

The first step was to find the variables that were associated with a child’s death.

Bivariate analysis was carried out to identify these variables which were later

put into bayesian models for further analysis.

Default priors were used.

After fitting the GLGM, the posterior estimates were overlayed on a raster file

for Malawi to generate predictions in under-five mortality in Malawi.
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CHAPTER FOUR

RESULTS

In this chapter, results of the analysis are presented beginning with exploratory

data analysis results and thereafter statistical inference based on the models

built. Maps of under-five mortality risk prediction are also presented together

with their associated errors.

4.1 Exploratory analysis

4.1.1 Cluster locations and population density

Figure 4.1 shows cluster locations within districts from which respondents from

the survey were obtained and the underlying population density per 100,000.

From the figure, it can be observed that more people are concentrated in cities.

Lakeshore areas also have relatively more people. In addition, the Central and

Southern regions have higher population densities compared to the Northern

region.
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Figure 4.1: 2015-16 MDHS cluster locations and underlying population
densities per 100,000. Water areas are shown in blue and white represent
uninhabited and protected places e.g. national parks.

4.1.2 Malaria risk

Figure 4.2 A shows how the risk of malaria is distributed across Malawi. As

shown in the map, it is observed that the risk is lower in the northern region

and in the cities and higher in the southern region. Lakeshore areas also have a

higher risk of malaria regardless of region. These risks are simply observed and

there are likely to be underlying reasons for the disparities in malaria risk across

the country. This therefore, is more likely to have an influence on under-five

mortality as well as mortality patterns within the districts.
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4.1.3 Vulnerability

Figure 4.2 B shows disparities in how populations are vulnerable to certain

conditions. We observe that the uppermost Northern Malawi is relatively more

vulnerable as compared to the central and southern part of the northern region.

The Central region and the cities of Malawi are generally less vulnerable and

most of the Southern region and lakeshore populations are the most vulnerable.

Figure 4.2: High spatial resolution population level covariate data (A) Average
malaria risk (B) Proportion of vulnerable individuals

4.2 Under-five mortality rates

Figure 4.3 shows crude under-five mortality rates at district level obtained

by aggregating number of deaths reported within each district and taking the

average. It is observed that the northern part of Malawi has higher mortality

rates followed by the southern region and finally the central region which has

lower rates. However, all three cities namely Mzuzu, Lilongwe and Blantyre

from northern, central and southern regions respectively have the lowest rates

of under-five mortality, (< 0.02). As observed, the district level estimates of

mortality mask the possible heterogeneities that are likely to be present at the

sub district level due to differences in risk factors.
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Figure 4.3: Crude under-five mortality rate per district in Malawi.

4.3 Association between under-five mortality

and covariates

Table 4.1 presents baseline characteristics for the whole country. The mean age

of mothers included in the study was 28.03 years and the mean birth weight

of the children included in the survey was around 3.2kgs. These statistics

were done before grouping the variables into discrete categories. A higher

proportion of deaths was observed in rural areas (2.5%) compared to urban

areas, (2.2%). There was an observed linear relationship between the level of

education and proportion of children that had died with the highest proportion

of mortality among mothers with primary education followed by mothers with

secondary education then by those with higher education, (2.5%, 2.4% and

2.1% respectively). However, a slightly lower proportion of deaths was observed

among mothers with no education at all (2.2%) compared to those with primary

and secondary education.
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A Chi-Squared test showed that mother’s age and weight of a child at birth

were associated with under-five mortality, (p < 0.01).
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Table 4.1: Baseline characteristics of mothers with under-five children in Malawi
as of 2015

Outcome

Alive,N(%) Dead,N(%) Total,N(%) p-value

N 11394(97.6) 286(2.4) 11680(100)

Mother’s age(yrs) < 0.001

15-19years 926 (96.3 ) 36 (3.7) 962 (100)

20-24years 3281 (98.1) 62 (1.9) 3343 (100)

25-29years 2749 (97.9) 58 (2.1) 2807 (100)

30-34years 2278 (97.9) 50 (2.1) 2328 (100)

35-39years 1398 (96.9) 45 (3.1) 1443 (100)

40-44years 565 (96.4) 21 (3.6) 586 (100)

45-49years 197 (93.4) 14 (6.6) 211 (100)

Birthweight(kilograms) < 0.001

Low birthweight 1260 (96.1) 51 (3.9) 1311 (100)

Normal birthweight 10134 (97.7) 235 (2.3) 10369 (100)

Sex 0.127

Male 5620 (97.8) 128 (2.2) 5748 (100)

Female 5774 (97.3) 158 (2.7) 5932 (100)

Residence 0.356

Rural 9277 (97.5) 239 (2.5) 9516 (100)

Urban 2117 (97.8) 47 (2.2) 2164 (100)

Mother’s education < 0.873

None 1180 (97.8) 26 (2.2) 1206 (100)

Primary 7340 (97.5) 189 (2.5) 7529 (100)

Secondary 2637 (97.6) 66 (2.4) 2703 (100)

Higher 237 (97.9) 5 (2.1) 242 (100)

Wealth index 0.698

Lowest 2285 (97.7) 54 (2.3) 2339 (100))

Second 2309 (97.3) 63 (2.7) 2372 (100)

Middle 2182 (97.9) 47 (2.1) 2229 (100)

Fourth 2218 (97.3) 61 (2.7) 2279 (100))

Highest 2400 (97.5) 61 (2.5) 2461 (100)
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4.4 Model Results

Table 4.2 presents posterior means (given as odds ratios:OR) of a model with

fixed effects from both DHS and census covariates and the corresponding 95%

credible intervals (CI) for the GLGM. The odds of dying are not different for

children from mothers with different ages, (OR=1.02). A unit increase in risk

of malaria across a particular region.decreases the odds of children dying in

such areas by one percent (OR=0.99).

The odds of dying for children born with normal weight at birth are 42%

lower compared to children with a low birthweight, (OR=0.58) and the odds

of female children dying are 15% lower compared to male children (OR=0.85).

Children residing in urban areas have 46% lower odds of dying compared to

their counteroarts in rural areas, (OR= 0.64). There is almost no difference in

odds of children dying among mothers with secondary education and mothers

with lower education (OR=1.01).

Children from highly educated mothers have 17% lower odds of dying compared

to children from mothers with lower education. Children from richest households

have 1.17 times higher odds of dying compared to children from poor households.and

the odds of dying for children from middle to do households are 15% lower

compared to children from poor households.
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Table 4.2: Posterior estimates of model with fixed effects from both DHS and
census data sets

Variable OR 2.5% Quantile 97.5% Quintile

Intercept 0 0 0

Mother’s age 1.02 1.01 1.04

Birth weight

Normal weight 0.58 0.43 0.79

Sex of child

Female 0.85 0.67 1.07

Residence

Urban 0.64 0.43 0.96

Mother’s education

Secondary 1.01 0.74 1.39

Higher 0.83 0.32 2.11

Wealth index

Middle 0.85 0.61 1.20

Fourth 1.06 0.76 1.48

Highest 1.17 0.76 1.75

Vulnerability 1.03 1.01 1.04

Malaria risk 0.99 0.98 1.00

4.4.1 Predicted risk of under-five mortality

Figure 4.4 shows the predicted mortality risk map. The Northern areas in

general have a higher risk of under-five mortality. This is in agreement with the

observed crude mortality map which showed high rates in the Northern areas.

Lower risks are observed in Central and Southern areas. However, Nsanje,

Neno, Chikwawa and Mwanza districts from the South Western region have

higher risks of under-five mortality especially in areas close to borders. Within

each district, the risk of under-five mortality is indeed varying as it was asserted

at the beginning of the study.For instance, in Chikhwawa district, areas close
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to the western border have a higher risk of under-five mortality compared to

areas within the same dictrict but close to Blantyre and Thyolo districts.
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Figure 4.4: Map showing predicted risk of under-five mortality in Malawi.

Figure 4.5 shows there are relatively higher error values in the Northern part of

Malawi as well as in border districts shown by greener colours as compared to

the central and southern areas. This observation coincides with the sampling

density in these areas. The general observation is that areas closest to the

sampled locations have lower values of standard errors than those areas that

are far. Areas around Lilongwe and Blantyre fall within the same standard

error owing to the relatively large number of data points available for model

estimation.
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Figure 4.5: Map showing standard errors which are useful to quantify map
precision.
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CHAPTER FIVE

DISCUSSION AND RECOMMENDATIONS

5.1 Discussion

This chapter presents a discussion of the major findings of this study.

The study set out to combine multiple sources of data to model under-five

mortality at the sub-district level in Malawi.

The results showed that the geospatial techniques employed identified hotspots

of relatively high under-five mortality in Malawi. This was made possible

with the combination of multiple data sources with different spatial resolutions.

These results showed that combining datasets yields robust estimates at high

spatial resolution and reveals heteregeneities within the districts. The predicted

risk map is useful for focussed interventions, for example, it can advise areas to

be targeted such as areas with higher risk of under-five mortality. In addition,

since the estimates are at a local level, the estimates may provide a base against

which intervention programmes may be assessed through follow-up surveys.

The bayesian hierarchical modelling approach performs better when using different

sources of information by borrowing information, covariates within and between

different time periods and it allows modelling of survey estimates, underfive

mortality in our case, and underlying processes at different levels where data

are sparse. In addition, the approach has enabled combining data from different

sources that vary in their level of bias and timing and thus has informed

more accurate, local area burden maps and this is necessary for improved risk

stratification of high burden areas and identification of hot spots
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The results showed that under-five mortality was strongly associated with

mother’s age and child’s birth weight. These findings are in line with Ntenda’s

2016 study which also found that mother’s age and child’s birth weight are

positively associated with infant mortality, (Ntenda et al., 2014).

It was found that the odds of under-five children dying were higher for rural

residents as compared to urban residents. This could be as a result of lack and

not following proper disease prevention strategies attributed to poor settings

such as not going to hospitals when a child is sick, not sleeping under bednets to

prevent malaria, malnourishment resulting from shortage of food and balanced

meals. This finding is similar to Ntenda’s who found that the risk of children

dying was higher for rural respondents compared to their counterparts in Malawi,

(Ntenda et al., 2014). It is believed the urban/rural mortality differentials are

attributed to various socioeconomic differences that exist within the country.

In addition, factors such as better education, more public infrastructure that

provides sanitation services, safer water supply, better systems to handle household

waste and excreta removal, and easier access to healthcare services that are

more favorable in urban than in rural areas can also explain this relationship.(Titaley

et al., 2008; Hosseinpoor et al., 2005; Mekonnen et al., 2013).

Mortality is also likely to be driven by malaria as it one of the leading killers

of children. Malaria risk was found to significantly contribute to underfive

mortality with a one percent higher odds. This is true as it is evident in several

studies that malaria is one of the leading causes of under-five mortality in

Malawi, (Chilanga et al., 2020). Results showed that the risk of malaria was

high in the Southern region and Lakeshore areas. This is the case probably

because these areas are hot and coupled with high mosquito prevalence. The

lower risk of malaria in the Northern region could be as a result of lower

populations and therefore an advantage towards malaria initiatives. On the

other hand, the lower risk in Chikwawa and Nsanje despite being hot areas
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and providing a conducive environment for mosquitoes, could be attributed

to the fact that these areas are hot spots for a number of NGOs involved in

distribution of ITN which target pregnant mothers and children.

Similarly, the odds of dying are higher for vulnerable children as compared

to less vulnerable children. For example, households experiencing economic

instability are more vulnerable to spread of diseases and collapse of their health

care systems as well as poor health conditions, (Kalipeni, 2000).

High vulnerability in most parts of Malawi is likely due to the fact that many

Malawians are clustered close to the poverty line and due to shocks such

as droughts, floods and fluctuations in food prices, (Devereux et al., 2006).

Another reason could be due to a large proportion of Malawians relying on

agriculture and thus erratic rainfall, landholding inequalities, constrained access

to farm inputs and limited diversification and weak markets causing an increase

in agricultural vulnerability, (Devereux et al., 2006).

5.2 Recommendations

This study recommends the integration of data from different sources with

different resolutions as this helps in obtaining precise estimates of different

population parameters. In addition, this helps to obtain estimates even in areas

where data was not collected through prediction. Another recommendation is

that findings from surveys such as the DHS should be used along with maps

of risk prediction as this will enable effective allocation of resources. Also, the

risk maps should be used in several studies as they help in strengthening survey

findings. Furthermore, the risk maps should be updated regularly when new

data become accessible.

One of the main major limitations of this study was the use of census and DHS

data collected at different time points. We propose projection of DHS data to

match the years of which census collects their data. In addition, the 2015/16
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DHS data set is not very recent. However, the comprehensive nature of DH

surveys make them quite useful for the period between successive surveys. The

high-resolution population estimates from Worldpop are modelled estimates

and not observed population values.
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Appendix 

 

 

R Code 

 

 

library(haven) 

library(tidyverse) 

library(sf) 

library(raster) 

library(rasterVis) 

library(rgdal) 

library(maptools) 

library(RColorBrewer) 

library(rgeos) 

library(geostatsp) 

library(geoR) 

library(arsenal) 

 

mwdistricts <- read.csv("data/mwdistricts.csv", 

header = T,stringsAsFactors = F) 

mergedatanew <- read.csv("data/mergeddata1.csv", 

header = TRUE, stringsAsFactors = FALSE) 

 

dat <- read.csv("data/merged_data.csv",header=TRUE, 

stringsAsFactors = FALSE) 

pop <- raster("data/MWI_ppp_2015_adj_v2.tif") 

clusters <- readOGR("data/Geographical data","MWGE7AFL") 

mw.districts <- readOGR("data/Malawi districts","District") 

lakes <- readOGR("data/Malawi districts","lake") 
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census <- read.csv("data/Censusdata.csv",header = T], 

stringsAsFactors = F) 

 

# manage and change projections 

mw.districts <- spTransform(mw.districts, 

CRS("+init=epsg:4326")

) # set projection for lakes 

proj4string(lakes)  <-  CRS("+init=epsg:32736") 

 

 

lakesSP <- spTransform(lakes,CRS("+init=epsg:4326")) 

 

 

# convert spatialpointdataframe to usual dataframe 

clusterdf <- as.data.frame(clusters) 

 

# reduce  DHS  cluster  data 

clusterdf <- clusterdf[,c("DHSCLUST","ADM1NAME", 

"LATNUM","LONGNUM", "ALT_GPS")] 

%>% 

rename(clusterID="DHSCLUST") 

 

 

# subset the data 

dat <-  dat[,c("v001","v012","v025","v106","v137", 

"v155","v190","b4_01","b5_01","v201","v208", 

"m19_1","m15_1","hv111_01","hv201","hv113_01", 

"hv115_01")] 

 

# rename  variables 

 

 

dat <- rename(dat,clusterID="v001",mothAge="v012", 
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residence="v025", educ="v106",totaChildren="v137", 

literacy="v155",wealthIndex="v190,sex="b4_01", 

alive="b5_01",totalChildrenBorn="v201",totalBirths 

="v208",birthWeight="m19_1",placeDelivery= 

"m15_1",motherAlive="hv111_01",waterSource= 

"hv201",fatherAlive="hv113_01",maritalStatus= 

"hv115_01") 

 

 

 

# merge the two datasets 

dat <- left_join(dat,clusterdf,by="clusterID") 

 

 

# aggregate the population 

pop <- aggregate(pop,fact=13,fun=sum,na.rm=TRUE) # converting to 

roughly 1km resolution 

mypop <-  aggregate(pop,fact=20,fun=sum,na.rm=T) 

# extract the populations 

dat$clusterpop <- ceiling(raster::    

extract(pop,dat$LONGNUM,dat$LATNUM)) 

 

 

#   determine    district 

plot(mw.districts) 

plot(lakesSP,add=TRUE,col="lightblue

") 

points(dat$LONGNUM,dat$LATNUM,pch=19,col=2,cex=0.5) 

 

 

# check with cluster coordinates fall into which district 

clusterCoords <- dat[,c("LONGNUM","LATNUM")] 

# remove  all NA  coords 

clusterCoords  <-  clusterCoords[complete.cases(clusterCoords),] 
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colnames(clusterCoords) <-  c("Longitude","Latitude") 

 

 

# convert  points  to  spatial  points 

clusterCoordsSP <- SpatialPoints(clusterCoords,proj4string 

=CRS("+init=epsg:4326"

)) 

 

 

U <- over(clusterCoordsSP,mw.districts) # which points fall into 

which district? 

 

j <- 

which(!is.na(U$OBJECTID)) 

finaldata <- dat[j,] 

finaldata$district <- 

U$DISTRICT 

 

# merge  DHS  with  Census  data 

completedata <-  left_join(finaldata,census,by="district") 

 

 

# summarize of deaths by district 

# add mid year populations to the data from the census data numDeaths 

<- completedata %>% 

group_by(district) %>% 

summarize(deaths=sum(totaChildren,na.rm  =  TRUE), 

pop = sum(clusterpop,na.rm = TRUE)) 

 

# exploratory maps 

mydata <- completedata 

xx  =  as.character(mw.districts@data$DISTRICT) 

mergedata <- left_join(numDeaths,mydata,by="district") 
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## exploratory  graphics 

# plot  raster  to  show  population  density  at  very  fine  resolution # 

overlay the gridded polygon over the Guangdong raster 

range(dat$clusterpop,na.rm = T) # to determine the range 

breaks <- seq(0,12, by=0.01) 

cols <- colorRampPalette(rev(c("red", "yellow", 

"lightgreen"))) (length(breaks)) 

pdf("images/mw_pop.pdf", width = (15*0.39), height = (20*0.39)) 

par(mfrow=c(1,1)) 

levelplot(log(pop), maxpixels = ncell(pop), 

col.regions = cols, 

at =  breaks, 

panel = panel.levelplot.raster, 

interpolate = TRUE, 

colorkey   =   list(space="right"), 

margin = FALSE) +layer(sp.points(clusterCoordsSP,col=hsv(0.5,0.5,0.5, 

alpha=0.5),pch=16,cex=0.5)) + layer(sp.polygons(lakes, fill = 

"lightblue layer(sp.polygons(mw.districts)) 

dev.off() 

 

 

 

 

# some data management G 

<- numDeaths 

G$DISTRICT <- 

G$district H <- 

mw.districts 

V <- left_join(H@data,G,by="DISTRICT") 

 

 

# number of births 
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births <- c(10152,14199,11078,8713,36415,367,38349,37304, 

13841,34889,19168,66478,27723,31931,24502,43979, 

25929,27702,12717,16123,26235,23765,15964, 22748, 

13195,17321,7330,41056,10233,31977,5883,4815) 

 

 

# plot estimates of the child mortality rate 

mw.districts$infantDeaths <- V$deaths 

mw.districts$births <- births # births extracted from NSO projections 

mw.districts$IMR <- mw.districts$infantDeaths/mw.districts$births*1000 brks 

<- c(10,20,30,40,50,60) 

cols <- brewer.pal(6,"BuGn") 

pdf("images/IMR.pdf",width = (20*0.39),height = (25*0.39)) 

par(mfrow=c(1,1),mar=c(2,2,2,2)) 

plot(mw.districts) 

plot(lakes,add=TRUE,col="lightblue") 

plot(mw.districts,col=cols[findInterval(mw.districts$IMR, 

brks)],add=TRUE) 

legend("bottomleft", 

legend = 

leglabs(brks,"<",">="), fill = 

cols, 

bty = "n", 

cex = 1.1, 

y.intersp = 0.9, 

title = "IMR") 

box(lwd=1,bty="o"

) dev.off() 

 

# plot  estimates of the  child mortality  rate 
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mw.districts$U5Deaths <- V$deaths 

mw.districts$births <- births # births extracted from 

NSO projections 

mw.districts$UMR <- mw.districts$U5Deaths/mw.districts$births*1000 

brks <- c(10,20,30,40,50,60) 

cols <- brewer.pal(6,"BuGn") 

pdf("images/UMR.pdf",width = (20*0.39),height = (25*0.39)) 

par(mfrow=c(1,1),mar=c(2,2,2,2)) 

plot(mw.districts) 

plot(lakes,add=TRUE,col="lightblue") 

plot(mw.districts,col=cols[findInterval(mw.districts$UMR, 

brks)],add=TRUE) 

legend("bottomleft", 

legend = 

leglabs(brks,"<",">="), fill = 

cols, 

bty = "n", 

cex = 1.1, 

y.intersp = 0.9, 

title = "UMR") 

box(lwd=1,bty="o"

) dev.off() 

 

#  exploratory   models   fitting 

# exporatory GLMs 

# geostatistical  models 

 

 

fit <- glm(alive ~ mothAge + factor(residence) + factor(maritalStatus), 

family = binomial(link="logit"),data = mergedata) 



65  

 

 

 

 

 

 

 

 

#reading raster files 

vulnerability <- raster("data/malawi_national_vulnerability_index.tif") 

malrisk <- raster("data/malaria_risk.tif") 

 

#Descriptives_DHS 

data view(completedata) 

 

 

 

covariatelist <- list(vulnerabilitymw = vulnerability, 

malriskmw = malrisk) 

 

mergedatamw <- read.csv("data/mergeddata1.csv",header = TRUE, 

stringsAsFactors = FALSE) 

mergedatamw <- read.csv("data/mergedatamw.csv",header=TRUE, 

stringsAsFactors = FALSE) 

 

mergedatamwspdf <- SpatialPointsDataFrame(mergedatamw, coords=mergedatam 

proj4string =CRS("+init=epsg:4326")) 

 

mergeddatanewspdf <- SpatialPointsDataFrame(mergedatanew, coords=mergeda 

proj4string= CRS("+init=epsg:4326")) 

 

 

 

mwnewgeofit <- glgm(formula = IM ~ mothAge + birthWeight + sex + 

residence + educ + wealthIndex + vulnerabilitymw + malriskmw, 
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data = mergeddatanewspdf, 

grid = 50, 

covariates = covariatelist, 

family = "binomial", 

Ntrials = mergeddatanewspdf$Nwomen, verbose 

= TRUE, 

shape = 1, 

buffer =  0, 

priorCI = list(sd = c(0.1,3), range = c(0.5, 2)), 

control.inla=list(strategy = "gaussian")) 

 

View(mwnewgeofit[["inla"]][["summary.fixed"]]) 

plot(mwnewgeofit$raster[["predict.invlogit"]]) 

plot(mwnewgeofit$raster[["random.mean"]]) 

write.csv(mwnewgeofit[["inla"]][["summary.fixed"]],       

"C:\\Users\\HP User\\Desktop\\MWnewgeofit.csv", row.names = TRUE) 
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