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ABSTRACT

As countries continue making gains towards the attainment of sustainable
development goals, surveillance of health outcomes at the sub-district level will
become important as district level indicators may mask areas where progress
is slow. To achieve this high level of surveillance, it may be necessary to
pool data from multiple data sources with different spatial resolutions. The
aim of this study was to estimate and model under-five mortality risk at the
sub-district level in Malawi by combining multiple data sources. We used
Bayesian hierarchical models to combine the Demographic and Health Survey
(DHS) data with Census data in a principled framework. A binomial generalized
linear geostatistical model was fitted to estimate the risk of under-five mortality
in the presence of the various covariates. Results showed that mother’s age
and weight of child at birth were associated with under-five mortality. However,
the posterior odds showed no significant differences in dying for children from
mothers across different ages. In addition, the results showed that the risk of
under-five mortality is higher in the northern region and along lakeshows as well
as districts in the lower Shire. The study provided a means for performing small
area estimation of population parameters of interest. In addition, using survey
findings along with risk maps is essential for disease monitoring and surveillance
purposes as well as for strengthening survey findings. More importantly, the
project has improved our understanding of methods used in combining information

from different sources.
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CHAPTER ONE
INTRODUCTION

This chapter presents a brief background of the study, the knowledge gap that

was identified, the study objectives and the significance of the study.

1.1 Background Information

Collecting data that gives accurate and timely estimates of population quantities
of interest is a challenge in most situations. Lohr and Raghunathan (2017)
point out that probability sampling provides a means of collecting information
efficiently as well as methods for assessing the suitability of the estimates
obtained and has long been a foundation for producing national statistics for
many countries (National Academies of Sciences, Engineering and Medicine,
2017). By definition, probability sampling means that “every item in the
population has a positive chance of being included in the sample” (Taherdoost,
2018, p. 20). This sampling process uses some form of random selection and
each unit is drawn with a known probability or has a nonzero chance of being in
the sample. Probability sampling is more useful and precise when generalizing

the findings from the sample to the whole population.

Many sampling techniques exist which fall under probability sampling including
simple random sampling, systematic sampling, cluster sampling and stratified
sampling. Different probability sampling methods are used depending on the
nature of studies as well as how convenient and suitable the technique is. For
example, a study conducted in Kampala District of Uganda used probability
systematic sampling from the police register to determine the burden of alcohol

use among the Uganda Police (Ovuga & Madrama, 2006). Surveys such as
1



Demographic and Health Survey (DHS), Multiple indicator Cluster surveys

(MICs) use a combination of cluster and stratified sampling to select samples.

The probability sampling methods, however, face some challenges such as decreased
response rates and in some occasions no response at all. In the United States of
America, for instance, as reported in the National Center for Health Statistics,
(2016), the US National Health Interview Survey (NHIS) which is a high-quality
face-to-face survey, the response rate had declined from 92% in 1997 to 70%
in 2015 and there were also issues of nonresponse among individuals within
sampled households. Five National Maternity Surveys (NMS) conducted in
England at varying intervals between 1995 and 2018 also showed a decline in

response rate from 67% in 1995 to 29% in 2018 (Harrison et al., 2020).

A study to evaluate the relative importance of the factors associated with the
decline of fertility in sub-Saharan Africa is another example showing declining
response rates (Westoff et al., 2013). From 24 sub-Saharan African countries
that were included in the study, the response rate declined to an average of
about 7% (ranging from 0.2% to 20%) in the year 2013 from the average of 9%
(ranging from 0.4% to 25%) response rate recorded between 2009 to 2011. The
2004 MDHS also showed a decrease in response rate compared with the 2000
MDHS. Specifically the response rates declined from 98% to 96% for women
and from 97% to 95% for men (National Statistical Office (NSO) [Malawi] and
ICF, 2017).

As a result of nonresponse, researchers have been increasingly inclined to implement
data collection strategies to combat this trend, including longer field periods,
increased numbers of call attempts, sending advance letters, offering incentives
and attempting refusal conversions (Holbrook et al., 2007). Issues of nonresponse

in surveys generally produce biased estimates of various population parameters.



Another challenge faced by probability sampling methods is the issue of misreporting.
Issues of misreporting are usually experienced in surveys covering sensitive
topics as a chosen respondent who agrees to participate in the survey fails

to answer sensitive questions honestly and thereby creating measurement error
(McNeeley, 2012). Survey respondents tend to misreport for various reasons
such as avoiding embarrassment or stigmatization, avoiding potential repercussions,
and trying to present themselves to the researcher in a positive manner (Pridemore

et al., 2005). For example, in the Malawian setting, surveys about sexual
activity are subject to misreporting due to social undesirability of such behaviour

among different cultures within the country (Poulin, 2010).

Data collection methods based on probability sampling are also expensive and
time-consuming (Lohr & Raghunathan, 2017). This, for instance, is reflected
when socially disadvantaged groups like the homeless, chronically mentally
ill and prostitutes are to be sampled (Bonevski et al., 2014). Under normal
circumstances, such groups of people are hard to be interviewed and require
more time in strategizing how to approach and engage them in health and
medical research surveys. In some circumstances, incentives may be required
to get such groups to participate in the survey which might mean additional

costs.

Another challenge faced by surveys is to provide useful estimates for small
sub-populations at higher spatial resolution widely known as small area estimation.
By definition, small area estimation (SAE) is “any statistical technique involving
the estimation of parameters for small sub-populations” (Rao & Molina, 2015,
p. 3). This is generally used when the sub-population of interest is included in
the larger survey and the term “small area” usually refers to a small geographical
area. The demand for small area statistics has greatly increased worldwide due
to their growing use in formulating policies and programs, in the allocation of

government funds and in regional planning (Rao & Molina, 2015). Furthermore,
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legislative acts by national governments have increasingly created a need for
small area statistics. In the Malawian setting for instance, SAE is important
so that limited resources for various interventions can be delivered to target

populations at the right time.

SAE techniques were used to produce reliable, stable, representative and high
precision small area estimates of poverty incidence at the district level in the
State of Bihar in India (Islam et al., 2018). This was done by linking data from
the existing Household Consumer Expenditure Survey data and the population
census. The results would be necessary for effective planning, implementation
and monitoring of various government schemes in Bihar such as focused and
target-oriented intervention programs. In South Africa, SAE techniques were
used to prove reliable district-level HIV prevalence estimates from national HIV
prevalence survey (Gutreuter et al., 2019). A small area analysis has also been
done pooling together national DHS surveys to provide estimates of under-five

mortality rates (Zehang et al., 2019).

Even though small area estimation is challenging, it is an area of interest for
researchers since it provides reliable estimates of population health indicators
essential for monitoring trends and inequalities over time (Alexander & Alkema,
2018). Alexander and Alkema (2018) also recognized that there might be
substantial differences that can occur across regions within a country and hence
the need to measure and monitor trends at different smaller area levels to
fully understand a country’s progress and possible interventions. Moreover,
according to Rose (2015), geographic variation in population parameters exist
not only at a country level but also extends into sub-national and local areas
and thus knowledge of such variations is necessary for decision making about

resource allocation (Islam et al., 2018).

Further to this, small area estimates of the prevalence of risk factors play a

crucial role in decision and policy-making and as such, quality of these estimates

4



must always be taken into account (Manzi et al., 2011). For example, when
addressing area-specific health issues or lifestyle behaviours, researchers need
to put into consideration the fact that some people live in deprived areas with
limited access to screening programmes or preventive healthcare campaigns,
or they may have a higher level of certain risk factors (Manzi et al., 2011).
Knowledge of the prevalence of risk factors in small areas is essential to make

health promotion strategies more effective.

To overcome the challenges faced by sample surveys such as high costs of data
collection, declining response rates, misreporting and small area estimation
discussed above, there is need to combine information from different data
types and sources. Combining information from different data sources with
varying spatial resolutions has many advantages. First and foremost, combining
information from several sources provides a means for improving estimates of
population parameters (Kim et al., 2018). For instance, “combining information
from multiple data sources can enhance estimates of health-related measures
by using one source to supply information that is lacking in another, assuming
the former has accurate and complete data” (He et al., 2014, p. 1). Further, if
the two data sources have common variables, then the produced estimates may
have improved precision due to increased sample size for the common survey

items, (Merkouris, 2010).

Since different data sources have different limitations such as nonresponse,
noncoverage and measurement or response bias, combining information for
the same set of variables reported from multiple sources might alleviate these
errors and produce improved estimates of these variables (He et al., 2014). For
instance, combining survey information with non-survey information such as
census provides comprehensive and precise estimates of useful health indicators

at a very fine spatial scale which improves decision making (Fung et al., 2010).



Reliable estimates of health status and many other population parameters may

in turn improve global health (Finucane et al., 2014).

Also, a combined dataset can address analytic problems beyond the scope of
a single survey (Lohr & Raghunathan, 2017) and can derive information on
multiple sections of the population unlike when a single data source is used.
A scenario may happen whereby two surveys conducted independently on the
same population can have one or more variables in common and other variables

that are not common for both surveys.

Because data is usually scarce and inadequate at small domain levels, combining
information provides a solution to small area estimation, (Islam & Chandra,
2019; Gutreuter et al., 2019; Zehang et al., 2019) and it addresses the best
prediction problem for small areas (Kim et al., 2018). Furthermore, the small
area estimates produced by combining information from two surveys are more
efficient than those produced from a single small survey (Islam & Chandra,
2019). This is made possible with the growing availability of data from several
different surveys such as DHSs’ as well as MICS and other auxiliary information
outside samples used in surveys. The auxiliary information usually comes from
large administrative record datasets like census and remote sensing data derived

from satellite images (Rose, 2015).

Lastly, combining information can produce datasets without missing information
in them. Usually, other data sources may contain information on variables that
are not measured in a survey (National Academies of Sciences, Engineering and
Medicine, 2017). Therefore, models developed on one data source may be used
to impute missing variables in other sources thus making statistical inference

beyond the scope of a single study possible (Lohr & Raghunathan, 2017).



1.2 Problem Statement

The declining response rates for national surveys worldwide affect the reliability
of estimates. Declining response rates have contributed to higher costs for
data collection and even if reliable estimates for subpopulations of interest
may be calculated, they may require multiple years of data which when they
are produced may be outdated (Lohr & Raghunathan, 2017). In resource
limited settings like Malawi, it is difficult to obtain small area statistically
representative estimates like at sub-district level. This is because national
surveys such as the DHS, which is a nationally representative survey, is powered
to provide district-level estimates and provides little or no information on
the small area population characteristics that probably vary across Malawi’s

geographic space.

To obtain estimates for subpopulations of interest, it may be necessary to
combine the information from surveys with other rich data sources such as
population and housing census (PHC) or other surveys that have a high spatial
resolution. However, methods on how to statistically combine such information
to derive better estimates for small area population parameters are not easily
accessible. For this reason, researchers usually make inferences about small
areas based on the district level estimates which are readily available from the
DHS. This research will investigate statistical methods for integrating DHS
data with much higher spatial resolution and precision datasets (census-based

data) to estimate under-five mortality at a fine spatial scale in Malawi.



1.3 Objectives of the study

1.3.1 Main objective

e To develop a principled statistical framework for combining data from
census and survey sources with an application to Malawi DHS and Malawi

Population Census.

1.3.2 Specific objectives

e To investigate different methods for combining data from multiple sources.

e To model under-five mortality at a sub-district level spatial resolution in

Malawi.

e To spatially predict under-five mortality indicator values at unsampled

locations.

1.4 Significance of the study

This study will help come up with estimates of important indicators in areas
that were not sampled and will deepen the understanding of the methods
used in combining information from different sources. This is important in
resource constrained countries where there are several disjointed data sources.
Furthermore, the study will contribute to the available work that has been done
in the field of data fusion in order to come up with reliable small population
estimates. In many cases, fine-scale data is not readily available, leading to
the use of coarse data in monitoring and disease surveillance. By leveraging

the multiple data sources available, small area estimates can be useful for
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monitoring and evaluation purposes of different health outcomes at a fine spatial

resolution.



CHAPTER TWO
LITERATURE REVIEW

The following chapter reviews statistical methods that are used in combining
data from different sources. It further expounds on the concept of Bayesian

Hierarchical Models and Generalised Linear Geostatistical Models.

2.1 Introduction

This chapter presents an overview of various statistical methods used for linking
data from different sources. It also introduces the methods that have been used

to link DHS data and census data for this study.

2.2 Methods for combining data

2.2.1 Statistical matching

Statistical matching is a model-based approach for providing joint statistical
information based on variables and indicators collected through two or more
sources, (Leulescu & Agafitei, 2013). Statistical matching requires that the two
files containing information on a set of units be completely disjoint, (Christen,
2012; D’Orazio et al., 2006; Kiesl & Réssler, 2006). This means that data
comes from two independent probability samples, with a few or no units in
common, (Scanu, 2014). In scenarios where there are a few units common to
both data sets, then these common variables are not able to identify the units.
The statistical matches are then made based on similar characteristics and not

a unique identifier, (Herzog et al., 2007; Radner, 1980; Winkler, 2014).
10



For example, if there are two data sources whereby one data source has information
on the education level of persons, their gender, age and municipality and
another data source has information on the occupation of (other) persons,
their gender, age and municipality, then the information on gender, age and
municipality can be used to statistically match similar units in the data sources

with each other, (Waal, 2015).

The basic idea in statistical matching is that there are two data sources A and
B sharing a set of variables X while the variable Y is available only in A and
the variable Z is observed just in B, D’Orazio (2011). The X variables are
common to both the data sources, while the variables Y and Z are not jointly
observed. Statistical matching, therefore, investigates the relationship between

Y and Z at “micro” or “macro” level.

In the micro case, statistical matching aims at creating a synthetic data source
in which all the variables, X, Y and Z, are available. This synthetic data
source is comprised of data from individual units in the different data sources
(D’Orazio, 2011). The information from one data source is used to estimate

target values in the other data set, (Waal, 2015, p. 4).

On the other hand, in the macro-level case, the data sources are integrated
in order to derive an estimate of the parameter of interest, (D’Orazio, 2011;
D’Orazio et al., 2006; Waal, 2015). Based on all the data, a parametric model
such as a multivariate model is built and thereafter one estimates the parameters
of the model which are then used to estimate population parameters of interest,

(Waal, 2015, p. 5).

Statistical matching may be applied in different situations, such as in matching
of two non-overlapping surveys with common background variables, matching
of Big Data to survey or administrative data, and finding imputation values

when for certain groups of units a number of variables are missing by design,

11



(Waal, 2015). For example, Wolff 1977 and Ruggles and Ruggles 1974 carried
out statistical matches in the US using the 1969 Internal Revenue Service Tax
Model and the 1970 Decennial Census Public Use Sample 15 percent file whose

aim was to estimate and analyse the size distribution of household wealth,

(Radner, 1980).

The major advantage of statistical matching is that it can enhance the complementary
use and analysis of existing data sources such as cross-cutting statistical information
that encompasses a broad range of socio-economic aspects without further
increasing costs and response burden, (Leulescu & Agafitei, 2013). Besides, if
statistical matching is done accurately, the linked data sets may provide more
information than would be provided by each different data source and this opens

up opportunities for performing multivariate relationships among the extra
variables, (Christen, 2012; Leulescu & Agafitei, 2013). For example, matching
patient addresses with spatial data can lead to the discovery of correlations

between environmental factors and local hot-spots of disease cases, (Christen,

2012).

However, statistical matching is a complex operation which requires specific

technical expertise and raises several methodological issues.

2.2.2 Imputation

Another method for combining information from different sources is by imputation.
Imputation refers to the process of replacing missing data with substituted
values. Imputation fills in responses for items not completed by the respondent,
(Brick, 2011) and thus multiple imputation is a tool for handling nonresponse
in sample surveys, (Gelman et al., 1998). After imputation, analysis is then

done as if there were no missing values at all, (Zarnoch et al., 2010).

12



In the imputation process, variables that have missing values or variables
missing from a data source are filled in using various techniques from information
available from surveys or other data sources. When imputing missing data
from several samples one can either impute missing data from each survey
or can combine data from all the surveys and impute the missing data in a
combined data matrix, (Gelman et al., 1998). When imputing data from each
survey, models usually built from a certain data source are used to impute the
missing variables from another data source, (Zarnoch et al., 2010). However,
this method becomes challenging if each individual survey has a lot of missing
information. Also, such methods are valuable when the survey with the missing
variable is much larger than the survey with the observed variable, and /or where
the available common variables are highly predictive of the outcome, (Elliott

et al., 2018).

On the other hand, when imputing data in a combined data matrix, multivariate
models or a sequence of regression models are often used. This method, however,
does not take into consideration the differences between surveys, (Zarnoch et
al., 2010). For instance, it does not take into account the differences in times of
conducting the surveys, survey methodologies and/or organisations conducting

the surveys, (Gelman et al., 1998).

A study by Gelman et al. (1998) used multiple imputation by adding a hierarchical
regression model to existing methods of imputation designed for single surveys.
This hierarchical model allowed covariates at both individual and survey levels
and linked parameters in the different surveys. Imputations of item nonresponse
were determined by data from that survey and imputations for questions not
asked in a survey were determined by data from other surveys. This study was
motivated by a study of pre-election public opinion polls in which not all the

questions of interest were asked in all the surveys.
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Results were a compromise between the approaches of no pooling and complete
pooling of surveys which is one of the properties of the Bayesian approach.
The estimated between-survey variation yielded wide posterior intervals for
questions not asked in the survey. Including more variables (including those
not asked in all surveys) in the imputation model, offered a flexible way to

account for item nonresponse.

He et al. (2014) conducted a study on hospice-use by late stage cancer patients
in which data was available from patients’ abstracted medical records but there
were issues of underreporting. The data was therefore supplemented with
the patients’ medicare claims that contained information on hospice use even
though these data also had some missing information. A multiple imputation
approach was applied using information from both sources whilst borrowing
strenth from each other. This method yielded sensible results since it was
able to account for misclassification of the hospice use from both data sources
in an appropriate way. Clearly, this approach provided an effective means to

synthesizing information from the two sources.

Imputation is advantageous because it can augment the amount of information
available for analysis and to produce data sets without holes in them, (Lohr
& Raghunathan, 2017; Soley-Bori, 2013; Zarnoch et al., 2010). In addition,
it provides a means for inferring beyond the scope of each study. Multiple
imputation allows for the uncertainty about the missing data by creating several
different plausible imputed data sets and appropriately combining results obtained

from each of them, (Sterne et al., 2009).

Despite these advantages, there are several challenges associated with combining
information from multiple survey data sources via the multiple imputation
approach. For example, surveys usually involve stratification, clustering and
weighting for selection and nonresponse, (Lohr & Raghunathan, 2017). Though

each survey may represent the same or a similar population, the complex

14



survey design differences have to be taken into consideration in deriving the
combined estimates. Estimates based on combining information from multiple
data sources are subject to errors due to incomparability as well as issues in
modelling of those errors, (Soley-Bori, 2013). Lastly, many multiple imputation
procedures assume that data are normally distributed, so including non-normally

distributed variables may introduce bias, (Sterne et al., 2009).

2.2.3 Multiple frame sampling

Another method for combining data from different data sources is multiple
frame sampling. A multiple frame survey is defined as ”a set of several (single
frame) surveys whose samples are combined to provide parameter estimates
for the union of frames”,(Biemer, 1984, p. 1). The objective of the dual-frame
approach is to draw subpopulation samples from different sampling frames that,
when combined, provide full coverage of the target population, (Baffour et al.,
2016). The general principle in multiple frame sampling is that probability
samples are selected independently from say () sampling frames available, (Lohr
& Raghunathan, 2017; Rao & Lohr, 2006). If @@ = 2, then the survey is called a
dual-frame survey and if ) > 2 then it is a multiple frame survey. Information is
collected for every unit in each frame sample which is then used to classify each
frame-specific sample data into disjoint domains, (Mecatti & Singh, 2014). For
example, for a simple dual-frame case, with frames A and B, four frame-specific
domain samples might be classified, that is, samples a(A) and ab(A) from frame
A and b(B) and ab(B) from frame B. The collection of data from the @) frames
is then used for estimation of the population parameter of interest and the union

of all the frames represents the target population, (Mecatti & Singh, 2014).

Estimation occurs in different ways. First is a combined frame approach which

is also known as a single frame estimation. In the combined frame approach,
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all the samples drawn from different frames are combined into a single sample
with appropriate weights included and then population parameter estimates
are computed directly, (Lu et al., 2013). This method is simple and unbiased

but does not use all the relevant information, (Lu et al., 2013).

The other approach is known as a separate frame approach and involves computing
separate estimates of each domain using each sample that falls in that domain,
(Mecatti & Singh, 2014). Afterwards, the domain estimates are aggregated over
all the domains within and between frames in order to obtain an estimate of

the population parameter.

Sampling units from multiple frames increases coverage and/or efficiency than
when only a single sampling frame is used, (Brick, 2011). Multiple frame
methodology can be used to improve survey coverage by complementing the
strengths and limitations of one another and /or to reduce cost while maintaining
broader coverage, (Chromy & Wilson, 2013; McMillen et al., 2015). For example,
in a survey of businesses, where one frame is an incomplete list of businesses
but easily accessible, and the other frame a list sample of businesses indicating
their geographic areas, information from these two frames may be combined to

provide better coverage and lead to efficiency, (Brick, 2011).

In the same vein, multiple frame surveys greatly decrease sampling costs due
to the use of already available administrative records, (Rao & Lohr, 2006).
Hartley (1962, 1974) showed that dual-frame surveys can cost far less than a
single-frame survey that achieves the same precision. His applications concentrated
on the situation where one frame is complete but expensive to sample; other
frames are inexpensive to sample but incomplete. In many agricultural surveys,
an area frame consists of segments of land; enumerators visit a probability
sample of the segments. A list frame consists of the names and addresses of
agricultural operators. The area frame is complete and insensitive to changes

in farm ownership and activity, but very expensive to sample because of the
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in-person visits. The list frames are usually less costly to sample, particularly
if the commodity of interest is concentrated in the operators on the list, but

the lists may not include all producers of the commodity.

It should be noted that the different frames from which information is derived
from usually include different subsets of the population, (Lohr & Raghunathan,
2017) and that these methods are ideal when combining information from

sources that are measuring same quantities.

2.2.4 Record linkage

Record linkage refers to “a process of pairing records from two files and trying to
select the pairs that belong to the same entity”, (Winglee et al., 2005, p. 4) and
is a key technological tool that is used to exploit the wealth of information from
different data sources, (Shlomo, 2019). Record linkage is conducted between
two distinct data sources or within a single data-set to identify multiple entries
for one person or record unit. This is done by matching and then merging
records for a particular entity from a survey with other data sources believed
to belong to the same entity using record identifiers such as name, date of birth

and address, (Shlomo, 2019; Winglee et al., 2005).

There are two types of record linkage and these are exact or deterministic record
linkage and probabilistic record linkage. In exact record linkage, records that
have been linked from two different sources are declared to belong to the same
entity if and only if they agree exactly on every character of every matching
variable, (National Academies of Sciences, Engineering and Medicine, 2017;
Shlomo, 2019). For example, “when comparing two records on first and last
name, age and street number, the records are deemed to be a link if and only
if the names agree on all characters, the ages are equal and the street numbers

are identical”, (Herzog et al., 2007, p. 82).
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On the other hand, probabilistic record linkage is used when there is no unique
identifier across data sources or when personal identifiers used in reporting or
transcription do not differ, (Brown, 2017; Kabudula et al., 2014). By definition,
probabilistic record linkage refers to “the process of determining which records
in two databases correspond to the same underlying entity without a unique
identifier”, (McVeigh et al., 2019, p. 1). To determine whether a pair of records
belong to the same entity, probabilities are used, (Machado, 2004). Under
the probabilistic type of record linkage, a similarity score of likely matches is
calculated using a pattern of agreements, disagreements, and near-agreements
among the variables used in linking, (Lohr & Raghunathan, 2017). Threshold
value is determined before-hand such that if the similarity score exceeds the

threshold then a record from source A is linked with a record from source B.

All in all, data linkage should be conducted with optimal validity and reliability,

and minimal risk to privacy and confidentiality, (Dusetzina et al., 2014).

2.2.5 Bayesian Hierarchical methods

Bayesian hierarchical models are “multi-level stochastic models in which a
probability is decomposed into a series of levels linked by simple probability
rules”, (Arab et al., 2007, p. 2). The development of hierachircal models was

a primary result of a shift in collaboration of statistics with other disciplines
and inclusion of complex processes and recognition that prior knowledge in
experiments plays a crucial role in statistical inference, (Gelfand, 2012). Hierarchical
models offer a flexible framework for accommodating complex relationships
between data and the process models while taking into account different sources

of uncertainty in the model as well as priori scientific knowledge while retaining
many advantages of a strict likelihood approach, (Arab et al., 2007). In hierarchical

modelling, the joint distribution of a collection of random variables can be
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decomposed into a series of conditional models. For example, if a, b and ¢
are random variables then basic probability allows the factorization: [a,b, ] =
[a]b, J[ble][¢]

whereby [.] specifies a probability distribution and the joint distribution describes

the behaviour of the process at all spatial locations and possibly at all times.

There are three basic stages when modeling a complicated process in the presence
of data. As motivated by Berliner (1996), a data model is the first stage
and is an observational process which specifies the data distribution given the
fundamental process of interest and parameters describing the data model,
(Gelfand, 2012). The second stage is a process model which describes the
process and is conditional on other process parameters. The final stage is a
parameter model which models uncertainty in the parameters, from both the

data and process stages. Mathematically, the three stages are written as follows:

Stage 1: Data model: [data|process, data parameters|
Stage 2: Process model: [process|process parameters|

Stage 3: Parameter model: [data|process, data parameters|

It has to be noted that each of these three stages can have many sub-stages.

Unlike the methods discussed above where paramaters are fixed and unknown,
in Bayesian hierarchical models the paramaters are regarded as random variables
and statements about these parameters are interpreted as the degree of belief
based on some prior knowledge, (Held & Sabanés Bové, 2014). The beliefs about
these parameters are then revised and summarized in a posterior distribution

after getting the data, (Filippi & Holmes, 2017).

Advantages of Bayesian hierarchical models
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Firstly, when modeling via the Bayesian approach, many different sources of
uncertainty can be incorporated and projected through time. For instance, the
prior distributions reflect uncertainty in parameters while the likelihood model
captures stochasticity of the process and some sampling and non-sampling
errors. As a result, one framework can handle data from multiple sources
while taking into account the different quality of each source at the same time,

(Alexander & Alkema, 2018).

Another advantage of Bayesian modeling is that since it incorporates prior
information in the model, then the resulting posterior parameter estimates
are influenced by the observed data. This is particularly useful in situations
where data is limited in such a way that the little information available can be
combined robustly through the Bayesian approach and hence allowing information
to be pooled across different dimensions such as time and age. For example,
trends observed in some areas can be used to inform trends in other similar

areas with limited data, (Alexander & Alkema, 2018).

A study involving Bayesian hierarchical models for estimating agricultural yield
from multiple repeated surveys was formulated by (Wang et al., 2012). In
this study, prior distributions on model parameters were specified and details
on model inference were presented via Markov chain Monte Carlo (MCMC)
methods. In their model, information from multiple monthly surveys measured
on different temporal supports was combined and the different levels of the
hierarchy incorporated dependence between monthly surveys as well as serial
dependence of annual yield. Results showed that the Bayesian model produced
superior yield forecasts/estimates, while quantifying different sources of uncertainty.
This study shows that hierarchical models are flexible in accommodating multiple
data sources and different serial correlation structures. More importantly the
model was able to produce root mean square error reduced by between 7.5% and

15.5% over other yield estimators. Finally, due to the model’s ability to include
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auxiliary information in its levels, the study was able to directly measure the

effect of environmental conditions on end of season corn yield.

Finucane et al. (2014) conducted a study whose aim was to estimate population-level
trends in measures of health status. In their study, Finucane et al. (2014)
presented a Bayesian model that systematically combined disparate data to
make country-, region- and global-level estimates of time trends in important
health indicators, (Finucane et al., 2014). A total of 199 countries and territories
from 1980 to 2008 were included to estimate trends in mean systolic blood
pressure (SBP) for adults aged 25 years and older. The 199 countries were
grouped into 21 subregions which were further grouped into seven merged
regions. In this study, a hierarchical model was necessary to accommodate
missingness when the data was being aggregated to regional and global levels
and to provide inference for all country-year-age triplets. To borrow strength
over time, countries and age prior distributions provided by the hierarchy were
used while constraining plausible parameters. Finucane et al. (2014) fitted a
Bayesian hierarchical model using MCMC approach which enabled inference
in high dimensional constrained parameter space while providing posteriors
important for statistical inference. Results showed that there had been a
transition in risk of HBP for cardiovascular disease with decreasing blood
pressure in high-income regions and increasing levels in many lower income

regions.

A Bayesian framework was also applied in propagating large database of malaria
field survey to evaluate trends in malaria infection prevalence across Sub-Saharan
Africa between the years 2000 to 2015, (Bhatt et al., 2015). Data from 27,573
geo-referenced population clusters from sub-Saharan countries were combined
in a spatio-temporal Bayesian geostatistical model to model malaria infection
prevalence in children aged between 2 to 10 years. Results showed that the

prevalence of malaria infection in these children declined from 33% in 2000
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to 16% in 2015. Community-based surveys data across sub-Saharan Africa
were also combined to determine malaria transmission cycles, (Snow et al.,
2017). In this study, data from 50,424 surveys at 36,966 geocoded locations
were combined in a Bayesian hierarchical binomial model in order to estimate
stable spatial and temporal structured patterns of malaria prevalence in children
aged 2 to 10 years between the years 1900 to 2015. Similarly, results showed
a long-term decline in malaria prevalence from 40% between 1900-1929 to 24%
between 2010-2015. Evidently, the Bayesian approach provided a framework

for conveniently combining such different data sources.
Geostatistical modelling

Geostatistical data methods are a form of hierarchical specification which naturally
lead to the adoption of a Bayesian framework methodology for inference and
modeling purposes, (Gelfand & Banerjee, 2017). Geostatistics refers to “the
sub-branch of spatial statistics in which the data consist of a finite sample of
measured values relating to an underlying spatially continuous phenomenon”,

(Diggle & Ribeiro, 2007, p. preface).

The general theory in geostatistics is that measurements taken at locations close
together are usually more alike than measurements taken at locations farther
apart, (Gotway & Hartford, 1996). Geostatistics, therefore, provides methods
for quantifying this spatial correlation and for incorporating it in statistical
estimation and inference.

The other main objective of geostatistics lies in prediction. In geostatistics,
prediction refers to “inference about the realization of the unobserved signal

process S(z)”, (Diggle & Ribeiro, 2007, p. 24) and this is called kriging.
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CHAPTER THREE
MATERIALS AND METHODS

The following chapter expands in detail the materials and methods that were
used in the study. It expounds on the statistical formulae for the analysis

methods that were used in the study.

3.1 Data sources

3.1.1 MDHS data

The 2015-2016 MDHS was a cross-sectional survey and took place between
October 2015 and February 2016 and it provides a comprehensive overview of
population, maternal and child health issues in Malawi. In this survey, data that
allows the calculation of key demographic indicators such as fertility, under-five
and adult mortality rates were collected. In addition, the data allows the
exploration of direct and indirect factors that determine the levels and trends
of fertility and child mortality. The 2015-2016 MDHS used a two-stage selection
process as follows: 850 standard enumeration areas (SEAs) were selected in 173
urban and 677 rural areas (stratum or SEAs) using a probability proportional to
the SEA. In the second selection stage, a household list was used as a sampling
frame for selecting households in the selected SEAs. A total of 30 households
per urban SEA and 33 households per rural SEA were selected for interviews.
The survey interviewed all women aged 15 to 49 who were either permanent
residents of the selected household or those who slept in the household the night

before the survey. The survey selected 27,516 households and identified 25,146
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eligible women. Consequently, a total of 24,562 women were interviewed out of

the 26,361 households that were occupied.

3.1.2 Census and population level covariates data

In addition to the point level covariate data from the MDHS referenced at each
cluster, we also obtained population level geospatial datasets covering the whole
country from Humanitarian Data Exchange (https://data.humdata.org/). In
particular, we used vulnerability score to capture the social-economic structure
of the country. Additionally, being a malaria endemic country and its threat
among children, we included malaria risk as a potential predictor of mortality.
Model-based geostatistics are used to measure infection prevalence for malaria
and average proximity risk score for vulnerability by creating risk surfaces
based on thousands of geolocated cross-sectional surveys. The inclusion of these
covariates was influenced by studies that have shown that low socio-economic
status and malaria are among the factors contributing to child mortality, (Johnson
et al., 2010). Lastly, population data were extracted from the WorldPop data
sets. All these population level data were in raster format at 100m spatial
resolution. These data provided estimates at a high resolution thus allowing
the calculation of important health indicators at a finer scale than would be

possible if only district-level covariates were used.

Raster data allows for an easier way of integrating two types of data such as
discrete and continuous data. Also, with raster data, analysis of the data is
easy and quick to perform and do not require storage of geographic coordinates
since the geographic location of each cell is implied by its position in the cell

matrix.
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3.2 Data management

Child and women data files from DHS were merged by matching their household
numbers. Variables that were not necessary for the study were dropped and
only kept the variables relevant to the under-five mortality problem. Data
cleaning was carried out to remove duplicates and observations with missing
data. One aspect of the data cleaning process was to reduce the number of
variables in the merged dataset. Thus, from the 24,562 women aged between
15 to 49 that were interviewed, a total of 11680 women with children aged
five years and below were included in the survey of which 286(2.4%) women
had their children dead a year prior to the interview date while 11394(97.6%)

women had their children still alive.

3.3 Data analysis

Descriptive analyses were first done to summarize the data. In particular,
cross tabulations were done between the response variable and the explanatory
variables. Chi-square test of association was performed to find the factors
associated with under-five mortality. An exploratory spatial mapping was
performed to produce maps detailing the spatial distribution of clusters within
the 28 districts of Malawi and the underlying population densities. Spatial

mapping of crude under-five mortality at district level was also done.

To investigate the factors affecting under-five mortality, all potential risk factors
were then put into geostatistical models. During modeling the categories no
education and primary education for mother’s education were categorised as
one and this was asigned as the reference group. Similarly, for wealth index,
lowest and second weathy categories were categorised into a single category
and this was the reference category. This was done because the first categories
had few observations and could not be used as reference groups. After fitting

the model, we did predictive mapping of under-five mortality across the whole
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Malawi including at unsampled locations. All the covariates were used in the
prediction model and the predicted values were posterior means realised from
the posterior predictive distribution. In addition, approximate standard errors
were also mapped. Both the predictive and standard errors maps were produced
by overlaying their rasters on the Malawi districts map to estimate under-five

mortality in Malawi.

All data analyses were carried out in the R environment for statistical computing
using geostatsp package (R Core Team, 2020) which uses the Integrated Nested
Laplace Approximation (INLA) on the backend. Data visualization was carried

out in R.

Description of key study variables

Table 3.1 shows a description of variables used in the study.

Table 3.1: Variables used in the study

Variable Description Source
Alive(Response variable) Child alive(0= Dead, 1=Alive) DHS
Age Mother’s age in years DHS
Sex Sex of child(1=Male, 2=Female) DHS
Education Mother’s level of education (0=None, = DHS
1=Primary, 2=Secondary, 3=Higher)

Wealth Index showing a household well-being
(1=Lowest, 2=Second, 3=Middle, DHS
4=Fourth, 5=Highest)

Residence Area of residence(1=Rural, 2=Urban)  DHS

Birth weight Weight of child at birth in kilograms DHS

(1=Low birthweight(< 2.5Kgs),
2=Normal birthweight(> 2.5Kgs)
Malaria risk Average malaria risk Census

Vulnerability Proportion of vulnerable individuals Census
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3.4 Study setting

Malawi is a small landlocked country in Southern Eastern Africa, sharing
boundaries with Zambia, Tanzania and Mozambique. The country is divided
into 3 administrative regions and further into 28 districts. The public health
system comprises 4 central hospitalas, district hospitals and health centres.
At the community level, health suiveillance assistants (HSAs) provide basic
care including treatment of common illnesses in children. In addition, the
faith-based health facilities primarily under the Christian Health Association
of Malawi (CHAM) also provides a wide network of health facilities. Figure
3.1 provides more information about the districts and the distribution of public

health facilities.

[ Central hosw

@ District hosp
Community hosp <
Health centre x\

Zambia

Figure 3.1: District boundaries, location and distribution of health care facilities
in Malawi. Here, government and CHAM facilities are shown
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3.5 Modeling framework

In this section, the Bayesian hierarchical method for data integration is discussed.
Given that data is available, Bayesian methods fit in to estimate and predict
distribution of the process as well as parameters in hierarchical settings. The
parameters are considered to be random and not fixed. In Bayesian statistics,
prior knowledge is used along with available observed data in order to come up
with new estimates. These new estimates are derived from posterior distributions
of the data through Markov Chain Monte Carlo (MCMC) or INLA approaches
and are then used for statistical inference. Bayes’ Theorem provides a mechanism
for finding the posterior and the theorem is presented in the equation below

where y represents a random variable and 6 is a parameter of interest:

fyl0)f(9)

f(0ly) = )

(3.1)

In equation 3.1 above, f(f|y) is the posterior distribution and is the conditional
distribution of a specified parameters given the data, f(y|f) is the likelihood
function which is given by f(y|0) = [(f(y|0)f(0))df and f(0) is the prior
distribution. Usually, the Bayes’ theorem is written as the posterior distribution

being proportional to the likelihood times the prior distribution, that is:

f(Oly) o< f(yl0)f(0). (3:2)

In this study, focus is only on the geostatistical modeling approach which is
a special case of the Bayesian Hierarchical modeling that is used to combine

different datasets.
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3.6 Integrated Nested Laplace Approximation

This section describes how new estimates are derived through INLA approaches.

Given the posterior distribution:

1(6y) / F(6e,0ly)d = / 6, 9) F(Wly)de (3.3)

Interest is on obtaining posterior marginals f(6;|y) for each parameter in the

vector and the estimates of the hyperparameters given by,

F(ely) / F (ely)ds (3.4)

The following steps are followed in the INLA approximation. Firstly, the
posterior marginals of the hyperparameters are approximated as given in the

equation below:

_f0l) S F O Flo)
TWW) = 5@y <~ flly

0 0 ~
i @]{ (<9"$7>§)@' Do) F010),

where f(fly) is a Gaussian approximation for f(6ly) and 6* is the mode.

Secondly, the parameter vector is partitioned in such a way that 6 = (6;,0_;)

and are again approximated using the Laplace procedure to obtain:

f(0:,0_v,y) [0, ¢]y)
01' ) = ~ =
TOI9) = H0 10 0,0) ™ Fionlon v y)

INLA bypasses the computational complexity of computing f (0:]Y, y) by exploring

lo_=0: (6,0 [ (0110, ). (3.5)

the marginal joint posterior for the hyperparameters f(u|y) in a grid search to
select the important points ¢, jointly with a corresponding set of weights A
to give approximates to the posterior to the hyperparameters. Each marginal

f(¢x]y)Vk can be obtained using log-spline interpolation bases on selected 1
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and A;. For each k, the conditional posterior f(6;|6;]¢,) is computed and a

numerical integration:

K
F6:ly) =D FO:lvoe, y) f(ely)- (3.6)

k=1

is, then, used to obtain f(91-|¢, ).

3.7 Geostatistics

Geostatistics is a branch of spatial statistics concerned with the analysis of
statistically discrete data that relates to an unobserved continuous phenomenon.

In a geostatistical model, the data is represented as

(yi,z5) i =1,...,n.

Here, the y; are the realized values of the random variable Y; associated with
spatial locations #; € A C R2. In our application, the locations z; are the
specific locations (clusters) that were sampled during the DHS. Interest is on
estimating the underlying mortality across the continuous spatial region. It
is further assumed that the Y/s are dependent on an unobserved stochastic

process S = S(x) : x € R? which is expressed as follows;

[5, Y] = [S][Y]5] (3.7)

Let p(z) be the prevalence of under-five mortality at location z. The resulting
model is then binomial in nature yielding a generalized linear geostatistical

model (GLGM). A standard GLGM is presented as

— d(x)'B (3.8)

1Og{ p(x;) }

1 —p(z)
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d(x;) is a vector of explanatory variables associated with location x;. With

smoothing and random effects terms, the model becomes;

p(xl) — d(x:) - )
log {—1—p(xi)] =d(x;) B+ S(z;) + Z; (3.9)

where S = {S(z) : * € R?} is a Gaussian process with mean 0 and variance
o?. The correlation function is provided by p(z,2’) = Corr{S(z),S(z)}. It
is assumed that the spatial process S is stationary and isotropic. Therefore,

Corr{S(x), S(z")} = p||z — 2'|| where ||.|| is the Euclidean distance.

A Matern correlation function is used in this application

p(us ¢, k) = {27 T(k)} 1 (||l — 2'[] /)" Ksc (|2 — 27]]/9) (3.10)

In this study, we draw data from different sources with different resolutions
effectively splitting the covariate term, d(z;)" into different components. Therefore,
the model 3.9 above becomes

p(x;)

o L——pu

] =d(x;)+W(x)d+Qzx)~+ S(x;) + Z; (3.11)

In this formulation, d(x;)" is the vector of covariates at the sampled locations
as before, while W(x)" and Q(z)" are covariate vectors over the areal unit
and not necessarily at individual locations x;. Therefore, the model captures
data at different spatial resolutions. In particular, the W (x) and Q(z) capture

aggregate data for the entire spatial unit.

3.8 Spatial prediction for Generalised Linear

Geostatistical Models

Spatial prediction is concerned with estimating unknown values of a stochastic

process at locations where there was no data based on data available from
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nearby location points. The first step in spatial prediction is to define the
predictive target; let T be the target and is a property of the realisation of
a spatial component of the set of values of d(x)”3 + S(z) for all values of x
in the region of interest, A. In our application where the geostatistical model
is binomial in nature, the predictive target is the prevalence surface over the

region of interest A and is shown by the equation below:

T* = {p(z) = exp{T(x)} /(1 + exp{T(z)}) : x € A}, (3.12)
where T'(z) = d(x)" 8 + S(x) and the prediction takes the form of a map.

Secondly, a number of random samples , say, B are drawn from the predictive
distribution of the complete spatial surface {S(z) : € A}. Thereafter, the
value of the specific target from each sample 17, ..., T}; is calculated and suitable

summaries of the resulting empirical distribution of the 77" are reported.

During the actual prediction process, the region of interest A is approximated
using a grid x = {7, ..., 2} } consisting of ¢ prediction locations in region A. To
make inference on T*, we obtain samples from its predictive distribution, [T*|y].
It has to be noted that T™ can be calculated directly from the fitted model
parameters and the spatial surface S(x), hence samples of T* can be obtained
from the predictive distribution of S* = {S(z) : € x}. Finally, the predictive
samples s; for h = 1, ..., B can then be transformed into corresponding samples
t; from the predictive distribution of 7™ by direct estimation. This can then
be used to obtain any summary of the predictive distribution of interest at any

or all of the ¢ prediction locations zj.

3.9 Geostatistical model for Malawi

The covariate vector d(x;)" captures the following covariates from DHS; mother’s

age, birth weight, residence, mother’s education and wealth index. On the other
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hand, the vector W (z)' captures census covariates and these include malaria

risk and vulnerability both of which are in raster format.

The first step was to find the variables that were associated with a child’s death.
Bivariate analysis was carried out to identify these variables which were later
put into bayesian models for further analysis.

Default priors were used.

After fitting the GLGM, the posterior estimates were overlayed on a raster file

for Malawi to generate predictions in under-five mortality in Malawi.
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CHAPTER FOUR
RESULTS

In this chapter, results of the analysis are presented beginning with exploratory
data analysis results and thereafter statistical inference based on the models
built. Maps of under-five mortality risk prediction are also presented together

with their associated errors.

4.1 Exploratory analysis

4.1.1 Cluster locations and population density

Figure 4.1 shows cluster locations within districts from which respondents from
the survey were obtained and the underlying population density per 100,000.
From the figure, it can be observed that more people are concentrated in cities.
Lakeshore areas also have relatively more people. In addition, the Central and
Southern regions have higher population densities compared to the Northern

region.

34



10°S —

12°S

Latitude

14°S —

16°S —

33°E 33.5°E 34°E 34.5°E 35°E 35.5°E

Longitude

Figure 4.1: 2015-16 MDHS cluster locations and underlying population
densities per 100,000. Water areas are shown in blue and white represent
uninhabited and protected places e.g. national parks.

4.1.2 Malaria risk

Figure 4.2 A shows how the risk of malaria is distributed across Malawi. As
shown in the map, it is observed that the risk is lower in the northern region
and in the cities and higher in the southern region. Lakeshore areas also have a
higher risk of malaria regardless of region. These risks are simply observed and
there are likely to be underlying reasons for the disparities in malaria risk across
the country. This therefore, is more likely to have an influence on under-five

mortality as well as mortality patterns within the districts.
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4.1.3  Vulnerability

Figure 4.2 B shows disparities in how populations are vulnerable to certain
conditions. We observe that the uppermost Northern Malawi is relatively more
vulnerable as compared to the central and southern part of the northern region.
The Central region and the cities of Malawi are generally less vulnerable and

most of the Southern region and lakeshore populations are the most vulnerable.
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Figure 4.2: High spatial resolution population level covariate data (A) Average
malaria risk (B) Proportion of vulnerable individuals

4.2 Under-five mortality rates

Figure 4.3 shows crude under-five mortality rates at district level obtained
by aggregating number of deaths reported within each district and taking the
average. It is observed that the northern part of Malawi has higher mortality
rates followed by the southern region and finally the central region which has
lower rates. However, all three cities namely Mzuzu, Lilongwe and Blantyre
from northern, central and southern regions respectively have the lowest rates
of under-five mortality, (< 0.02). As observed, the district level estimates of
mortality mask the possible heterogeneities that are likely to be present at the

sub district level due to differences in risk factors.
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Figure 4.3: Crude under-five mortality rate per district in Malawi.

4.3 Association between under-five mortality

and covariates

Table 4.1 presents baseline characteristics for the whole country. The mean age
of mothers included in the study was 28.03 years and the mean birth weight
of the children included in the survey was around 3.2kgs. These statistics
were done before grouping the variables into discrete categories. A higher
proportion of deaths was observed in rural areas (2.5%) compared to urban
areas, (2.2%). There was an observed linear relationship between the level of
education and proportion of children that had died with the highest proportion
of mortality among mothers with primary education followed by mothers with
secondary education then by those with higher education, (2.5%, 2.4% and
2.1% respectively). However, a slightly lower proportion of deaths was observed
among mothers with no education at all (2.2%) compared to those with primary

and secondary education.
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A Chi-Squared test showed that mother’s age and weight of a child at birth

were associated with under-five mortality, (p < 0.01).
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Table 4.1: Baseline characteristics of mothers with under-five children in Malawi

as of 2015
Outcome

Alive,N(%)  Dead,N(%) Total,N(%) p-value
N 11394(97.6)  286(2.4) 11680(100)
Mother’s age(yrs) < 0.001
15-19years 926 (96.3 ) 36 (3.7) 962 (100)
20-24years 3281 (98.1) 62 (1.9) 3343 (100)
25-29years 2749 (97.9) 58 (2.1) 2807 (100)
30-34years 2278 (97.9) 50 (2.1) 2328 (100)
35-39years 1398 (96.9) 45 (3.1) 1443 (100)
40-44years 565 (96.4) 21 (3.6) 586 (100)
45-49years 197 (93.4) 14 (6.6) 211 (100)
Birthweight(kilograms) < 0.001
Low birthweight 1260 (96.1) 51 (3.9) 1311 (100)
Normal birthweight 10134 (97.7) 235 (2.3) 10369 (100)
Sex 0.127
Male 5620 (97.8) 128 (2.2) 5748 (100)
Female 5774 (97.3) 158 (2.7) 5932 (100)
Residence 0.356
Rural 9277 (97.5) 239 (2.5) 9516 (100)
Urban 2117 (97.8) 47 (2.2) 2164 (100)
Mother’s education < 0.873
None 1180 (97.8) 26 (2.2) 1206 (100)
Primary 7340 (97.5) 189 (2.5) 7529 (100)
Secondary 2637 (97.6) 66 (2.4) 2703 (100)
Higher 237 (97.9) 5 (2.1) 242 (100)
Wealth index 0.698
Lowest 2285 (97.7) 54 (2.3) 2339 (100))
Second 2309 (97.3) 63 (2.7) 2372 (100)
Middle 2182 (97.9) 47 (2.1) 2229 (100)
Fourth 2218 (97.3) 61 (2.7) 2279 (100))
Highest 2400 (97.5) 61 (2.5) 2461 (100)
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4.4 Model Results

Table 4.2 presents posterior means (given as odds ratios:OR) of a model with
fixed effects from both DHS and census covariates and the corresponding 95%
credible intervals (CI) for the GLGM. The odds of dying are not different for
children from mothers with different ages, (OR=1.02). A unit increase in risk
of malaria across a particular region.decreases the odds of children dying in

such areas by one percent (OR=0.99).

The odds of dying for children born with normal weight at birth are 42%
lower compared to children with a low birthweight, (OR=0.58) and the odds
of female children dying are 15% lower compared to male children (OR=0.85).
Children residing in urban areas have 46% lower odds of dying compared to
their counteroarts in rural areas, (OR= 0.64). There is almost no difference in
odds of children dying among mothers with secondary education and mothers

with lower education (OR=1.01).

Children from highly educated mothers have 17% lower odds of dying compared
to children from mothers with lower education. Children from richest households
have 1.17 times higher odds of dying compared to children from poor households.and
the odds of dying for children from middle to do households are 15% lower

compared to children from poor households.
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Table 4.2: Posterior estimates of model with fixed effects from both DHS and
census data sets

Variable OR 2.5% Quantile 97.5% Quintile
Intercept 0 0 0
Mother’s age 1.02 1.01 1.04
Birth weight

Normal weight 0.58 0.43 0.79
Sex of child

Female 0.85 0.67 1.07
Residence

Urban 0.64 0.43 0.96
Mother’s education

Secondary 1.01 0.74 1.39
Higher 0.83 0.32 2.11
Wealth index

Middle 0.85 0.61 1.20
Fourth 1.06 0.76 1.48
Highest 1.17 0.76 1.75
Vulnerability 1.03 1.01 1.04
Malaria risk 0.99 0.98 1.00

4.4.1 Predicted risk of under-five mortality

Figure 4.4 shows the predicted mortality risk map. The Northern areas in
general have a higher risk of under-five mortality. This is in agreement with the
observed crude mortality map which showed high rates in the Northern areas.
Lower risks are observed in Central and Southern areas. However, Nsanje,
Neno, Chikwawa and Mwanza districts from the South Western region have
higher risks of under-five mortality especially in areas close to borders. Within
each district, the risk of under-five mortality is indeed varying as it was asserted

at the beginning of the study.For instance, in Chikhwawa district, areas close
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to the western border have a higher risk of under-five mortality compared to

areas within the same dictrict but close to Blantyre and Thyolo districts.
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Figure 4.4: Map showing predicted risk of under-five mortality in Malawi.

Figure 4.5 shows there are relatively higher error values in the Northern part of
Malawi as well as in border districts shown by greener colours as compared to
the central and southern areas. This observation coincides with the sampling
density in these areas. The general observation is that areas closest to the
sampled locations have lower values of standard errors than those areas that
are far. Areas around Lilongwe and Blantyre fall within the same standard
error owing to the relatively large number of data points available for model

estimation.
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precision.
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CHAPTER FIVE
DISCUSSION AND RECOMMENDATIONS

5.1 Discussion
This chapter presents a discussion of the major findings of this study.

The study set out to combine multiple sources of data to model under-five

mortality at the sub-district level in Malawi.

The results showed that the geospatial techniques employed identified hotspots
of relatively high under-five mortality in Malawi. This was made possible
with the combination of multiple data sources with different spatial resolutions.
These results showed that combining datasets yields robust estimates at high
spatial resolution and reveals heteregeneities within the districts. The predicted
risk map is useful for focussed interventions, for example, it can advise areas to
be targeted such as areas with higher risk of under-five mortality. In addition,
since the estimates are at a local level, the estimates may provide a base against

which intervention programmes may be assessed through follow-up surveys.

The bayesian hierarchical modelling approach performs better when using different
sources of information by borrowing information, covariates within and between
different time periods and it allows modelling of survey estimates, underfive
mortality in our case, and underlying processes at different levels where data
are sparse. In addition, the approach has enabled combining data from different
sources that vary in their level of bias and timing and thus has informed
more accurate, local area burden maps and this is necessary for improved risk

stratification of high burden areas and identification of hot spots
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The results showed that under-five mortality was strongly associated with
mother’s age and child’s birth weight. These findings are in line with Ntenda’s
2016 study which also found that mother’s age and child’s birth weight are

positively associated with infant mortality, (Ntenda et al., 2014).

It was found that the odds of under-five children dying were higher for rural
residents as compared to urban residents. This could be as a result of lack and
not following proper disease prevention strategies attributed to poor settings
such as not going to hospitals when a child is sick, not sleeping under bednets to
prevent malaria, malnourishment resulting from shortage of food and balanced
meals. This finding is similar to Ntenda’s who found that the risk of children
dying was higher for rural respondents compared to their counterparts in Malawi,
(Ntenda et al., 2014). It is believed the urban/rural mortality differentials are
attributed to various socioeconomic differences that exist within the country.
In addition, factors such as better education, more public infrastructure that
provides sanitation services, safer water supply, better systems to handle household
waste and excreta removal, and easier access to healthcare services that are
more favorable in urban than in rural areas can also explain this relationship.(Titaley

et al., 2008; Hosseinpoor et al., 2005; Mekonnen et al., 2013).

Mortality is also likely to be driven by malaria as it one of the leading killers
of children. Malaria risk was found to significantly contribute to underfive
mortality with a one percent higher odds. This is true as it is evident in several
studies that malaria is one of the leading causes of under-five mortality in
Malawi, (Chilanga et al., 2020). Results showed that the risk of malaria was
high in the Southern region and Lakeshore areas. This is the case probably
because these areas are hot and coupled with high mosquito prevalence. The
lower risk of malaria in the Northern region could be as a result of lower
populations and therefore an advantage towards malaria initiatives. On the

other hand, the lower risk in Chikwawa and Nsanje despite being hot areas
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and providing a conducive environment for mosquitoes, could be attributed
to the fact that these areas are hot spots for a number of NGOs involved in

distribution of I'TN which target pregnant mothers and children.

Similarly, the odds of dying are higher for vulnerable children as compared
to less vulnerable children. For example, households experiencing economic
instability are more vulnerable to spread of diseases and collapse of their health

care systems as well as poor health conditions, (Kalipeni, 2000).

High vulnerability in most parts of Malawi is likely due to the fact that many
Malawians are clustered close to the poverty line and due to shocks such
as droughts, floods and fluctuations in food prices, (Devereux et al., 2006).
Another reason could be due to a large proportion of Malawians relying on
agriculture and thus erratic rainfall, landholding inequalities, constrained access
to farm inputs and limited diversification and weak markets causing an increase

in agricultural vulnerability, (Devereux et al., 2006).

5.2 Recommendations

This study recommends the integration of data from different sources with
different resolutions as this helps in obtaining precise estimates of different
population parameters. In addition, this helps to obtain estimates even in areas
where data was not collected through prediction. Another recommendation is
that findings from surveys such as the DHS should be used along with maps
of risk prediction as this will enable effective allocation of resources. Also, the
risk maps should be used in several studies as they help in strengthening survey
findings. Furthermore, the risk maps should be updated regularly when new

data become accessible.

One of the main major limitations of this study was the use of census and DHS
data collected at different time points. We propose projection of DHS data to

match the years of which census collects their data. In addition, the 2015/16
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DHS data set is not very recent. However, the comprehensive nature of DH
surveys make them quite useful for the period between successive surveys. The
high-resolution population estimates from Worldpop are modelled estimates

and not observed population values.
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Appendix

R Code

library(haven)
library(tidyverse)
library(sf)
library(raster)
library(rasterVis)
library(rgdal)
library(maptools)
library(RColorBrewer)
library(rgeos)
library(geostatsp)
library(geoR)

library(arsenal)

mwdistricts <- read.csv("'data/mwdistricts.csv",

header = T,stringsAsFactors = F)

mergedatanew <- read.csv("'data/mergeddatal.csv",

header = TRUE, stringsAsFactors = FALSE)

dat <- read.csv("'data/merged_data.csv",header=TRUE,

stringsAsFactors = FALSE)

pop <- raster(“data/MWI_ppp_2015_adj_v2.tif")

clusters <- readOGR("'data/Geographical data","MWGE7AFL")

mw.districts <- readOGR("data/Malawi districts","District")

lakes <- readOGR("'data/Malawi districts”,"lake™)
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census <- read.csv("data/Censusdata.csv",header = T],

stringsAsFactors = F)

# manage and change projections

mw.districts <- spTransform(mw.districts,
CRS("+init=epsg:4326'")

)# set projection for lakes

proj4string(lakes) <- CRS("+init=epsg:32736'")

lakesSP <- spTransform(lakes,CRS("+init=epsg:4326"))

# convert spatialpointdataframe to usual dataframe

clusterdf <- as.data.frame(clusters)

# reduce DHS cluster data

clusterdf <- clusterdf[,c("DHSCLUST","ADM1NAME",
"LATNUM","LONGNUM", "ALT_GPS")]
%>%

rename(clusterID="DHSCLUST")

# subset the data
dat <- dat[,c("'v001","v012","v025","v106","v137",
"v155","v190","b4_01","b5 01","v201","v208",
"m19_1""m15_1","hv111l 01","hv201","hv113_01",
"hv115 01")]

# rename variables

dat <- rename(dat,clusterlD="v001",mothAge="v012",
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residence="v025", educ="v106" totaChildren="v137",
literacy="v155" wealthlndex="v190,sex="b4_01",
alive="b5 01" totalChildrenBorn="v201" totalBirths
="v208",birthwWeight="m19 1" placeDelivery=
"m15_1",motherAlive="hv111 01",waterSource=
"hv201" fatherAlive="hv113 01" ,maritalStatus=
"hv115_01")

# merge the two datasets

dat <- left_join(dat,clusterdf,by="clusterID")

# aggregate the population

pop <- aggregate(pop,fact=13,fun=sum,na.rm=TRUE) # converting to
roughly 1km resolution

mypop <- aggregate(pop,fact=20,fun=sum,na.rm=T)

# extract the populations

dat$clusterpop <- ceiling(raster::
extract(pop,datSLONGNUM,datsLATNUM))

# determine district

plot(mw.districts)

plot(lakesSP,add=TRUE,col="lightblue

)
points(datSLONGNUM,datSLATNUM,pch=19,col=2,cex=0.5)

# check with cluster coordinates fall into which district
clusterCoords <- dat[,c("LONGNUM","LATNUM")]
# remove all NA coords

clusterCoords <- clusterCoords[complete.cases(clusterCoords),]
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colnames(clusterCoords) <- c("Longitude"”,"Latitude™)

# convert points to spatial points
clusterCoordsSP <- SpatialPoints(clusterCoords,proj4string

=CRS("+init=epsg:4326"
)

U <- over(clusterCoordsSP,mw.districts) # which points fall into

which district?

i<
which(lis.na(U$OBJECTID))
finaldata <- dat[j,]
finaldata$district <-

USDISTRICT

# merge DHS with Census data

completedata <- left_join(finaldata,census,by="district")

# summarize of deaths by district

# add mid year populations to the data from the census datanumDeaths
<- completedata %>%

group_by(district) %>%

summarize(deaths=sum(totaChildren,na.rm = TRUE),

pop = sum(clusterpop,na.rm = TRUE))

# exploratory maps
mydata <- completedata
XX = as.character(mw.districts@data$DISTRICT)

mergedata <- left_join(numDeaths,mydata,by="district")
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## exploratory graphics
# plot raster to show population density at very fine resolution#
overlay the gridded polygon over the Guangdong raster
range(dat$clusterpop,na.rm = T) # to determine the range
breaks <- seq(0,12, by=0.01)
cols <- colorRampPalette(rev(c('red”, "yellow",
"lightgreen™))) (length(breaks))
pdf("images/mw_pop.pdf’, width = (15*0.39), height = (20*0.39))
par(mfrow=c(1,1))
levelplot(log(pop), maxpixels = ncell(pop),
col.regions = cols,
at = breaks,
panel = panel.levelplot.raster,
interpolate = TRUE,
colorkey = list(space="right"),
margin = FALSE) +layer(sp.points(clusterCoordsSP,col=hsv(0.5,0.5,0.5,
alpha=0.5),pch=16,cex=0.5)) + layer(sp.polygons(lakes, fill =
"lightbluelayer(sp.polygons(mw.districts))
dev.off()

# some data managementG
<- numDeaths
G$DISTRICT <-
G$districtH <-
mw.districts

V <- left_join(H@data,G,by="DISTRICT")

# number of births
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births <- ¢(10152,14199,11078,8713,36415,367,38349,37304,
13841,34889,19168,66478,27723,31931,24502,43979,

25929,27702,12717,16123,26235,23765,15964, 22748,
13195,17321,7330,41056,10233,31977,5883,4815)

# plot estimates of the child mortality rate
mw.districts$infantDeaths <- V$deaths

mw.districts$births <- births # births extracted from NSO projections
mw.districts$IMR <- mw.districts$infantDeaths/mw.districts$births*1000brks
<- ¢(10,20,30,40,50,60)

cols <- brewer.pal(6,"BuGn")

pdf("images/IMR.pdf",width = (20*0.39),height = (25*0.39))
par(mfrow=c(1,1),mar=c(2,2,2,2))

plot(mw.districts)

plot(lakes,add=TRUE,col="lightblue™)
plot(mw.districts,col=cols[findInterval(mw.districts$IMR,
brks)],add=TRUE)

legend(“"bottomleft",

legend =

leglabs(brks,"<",">="),fill =

cols,
bty = "n",
cex = 1.1,

y.intersp = 0.9,
title = "IMR")
box(lwd=1,bty="0"
)dev.off()

# plot estimates of the child mortality rate
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mw.districts$U5Deaths <- VV$deaths

mw.districts$births <- births # births extracted from

NSO projections

mw.districtsSUMR <- mw.districts$U5Deaths/mw.districts$births*1000
brks <- ¢(10,20,30,40,50,60)

cols <- brewer.pal(6,"BuGn")

pdf("images/UMR.pdf",width = (20*0.39),height = (25*0.39))
par(mfrow=c(1,1),mar=c(2,2,2,2))

plot(mw.districts)

plot(lakes,add=TRUE,col="lightblue™)
plot(mw.districts,col=cols[findInterval(mw.districtsSUMR,
brks)],add=TRUE)

legend(""bottomleft",

legend =

leglabs(brks,"<",">="),fill =

cols,

bty = "n",
cex = 1.1,
y.intersp = 0.9,

title = "UMR™)
box(lwd=1,bty="0"
)dev.off()

# exploratory models fitting
# exporatory GLMs

# geostatistical models

fit <- glm(alive ~ mothAge + factor(residence) + factor(maritalStatus),

family = binomial(link="logit""),data = mergedata)
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#reading raster files
vulnerability <- raster(“data/malawi_national_vulnerability_index.tif")

malrisk <- raster("data/malaria_risk.tif")

#Descriptives_ DHS

dataview(completedata)

covariatelist <- list(vulnerabilitymw = wvulnerability,

malriskmw = malrisk)

mergedatamw <- read.csv("data/mergeddatal.csv"”,header = TRUE,
stringsAsFactors = FALSE)
mergedatamw <- read.csv("data/mergedatamw.csv",header=TRUE,

stringsAsFactors = FALSE)

mergedatamwspdf <- SpatialPointsDataFrame(mergedatamw, coords=mergedatam

projastring =CRS("+init=epsg:4326"))

mergeddatanewspdf <- SpatialPointsDataFrame(mergedatanew, coords=mergeda

proj4string= CRS("+init=epsg:4326"))

mwnewgeofit <- glgm(formula = IM ~ mothAge + birthWeight + sex +

residence + educ + wealthindex + vulnerabilitymw + malriskmw,
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data = mergeddatanewspdf,
grid = 50,

covariates = covariatelist,
family = "binomial™,

Ntrials = mergeddatanewspdf$Nwomen, verbose

= TRUE,
shape = 1,
buffer = 0O,

priorCl = list(sd = ¢(0.1,3), range = c(0.5, 2)),

control.inla=list(strategy = "gaussian™))

View(mwnewgeofit[["inla"]][["'summary.fixed"]])
plot(mwnewgeofit$raster[["predict.inviogit™]])
plot(mwnewgeofit$raster[["random.mean]])
write.csv(mwnewgeofit[["inla"]][['summary.fixed]],

"C:\\Users\\HP User\\Desktop\\MWnewgeofit.csv", row.names = TRUE)
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